已知f(x)=2cos2x+23sinxcosx+1.(1)求f(π4)的值;(2)若x∈[-π2,0]时,求f(x)的值域;(3)求y=f(-x)的单调递增区间.-数学

题目简介

已知f(x)=2cos2x+23sinxcosx+1.(1)求f(π4)的值;(2)若x∈[-π2,0]时,求f(x)的值域;(3)求y=f(-x)的单调递增区间.-数学

题目详情

已知f(x)=2cos2x+2
3
sinxcosx+1

(1)求f(
π
4
)
的值;
(2)若x∈[-
π
2
,0]时,求f(x)
的值域;
(3)求y=f(-x)的单调递增区间.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=2cos2x+2
3
sinxcosx+1

=2×class="stub"1+cos2x
2
+
3
sin2x+1

=
3
sin2x+cos2x+2

=2sin(2x+class="stub"π
6
)+2.
f(class="stub"π
4
) =2sin(class="stub"π
2
+class="stub"π
6
)+2

=2cosclass="stub"π
6
+2
=
3
+2

(2)若x∈[-class="stub"π
2
,0]

2x+class="stub"π
6
∈[-class="stub"5π
6
,class="stub"π
6
]

2x+class="stub"π
6
=-class="stub"π
2
时,f(x)min=-2+2=0,
2x+class="stub"π
6
=class="stub"π
6
时,f(x)max=1+2=3,
∴f(x)的值域是[0,3].
(3)y=f(-x)=2sin(-2x+class="stub"π
6
)+2,
其增区间为:-class="stub"π
2
+2kπ
≤-2x+class="stub"π
6
class="stub"π
2
+2kπ
,k∈Z,
解得-class="stub"π
6
-kπ≤x≤class="stub"π
3
-kπ
,k∈Z,
∴y=f(-x)的单调递增区间是[-class="stub"π
6
-kπ
class="stub"π
3
-kπ
],k∈Z.

更多内容推荐