设函数f(x)=22cos(2x+π4)+sin2x(Ⅰ)求f(x)的最小正周期;(Ⅱ)设函数g(x)对任意x∈R,有g(x+π2)=g(x),且当x∈[0,π2]时,g(x)=12-f(x),求g(

题目简介

设函数f(x)=22cos(2x+π4)+sin2x(Ⅰ)求f(x)的最小正周期;(Ⅱ)设函数g(x)对任意x∈R,有g(x+π2)=g(x),且当x∈[0,π2]时,g(x)=12-f(x),求g(

题目详情

设函数f(x)=
2
2
cos(2x+
π
4
)+sin2x
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设函数g(x)对任意x∈R,有g(x+
π
2
)=g(x),且当x∈[0,
π
2
]时,g(x)=
1
2
-f(x),求g(x)在区间[-π,0]上的解析式.
题型:解答题难度:中档来源:安徽

答案

函数f(x)=
2
2
cos(2x+class="stub"π
4
)+sin2x
=class="stub"1
2
cos2x-class="stub"1
2
sin2x+class="stub"1
2
(1-cos2x)=class="stub"1
2
-class="stub"1
2
sin2x.
(1)函数的最小正周期为T=class="stub"2π
2
=π.
(2)当x∈[0,class="stub"π
2
]时g(x)=class="stub"1
2
-f(x)
=class="stub"1
2
sin2x.
当x∈[-class="stub"π
2
,0
]时,x+class="stub"π
2
∈[0,class="stub"π
2
],g(x)=g(x+class="stub"π
2
)=class="stub"1
2
sin2(x+class="stub"π
2
)=-class="stub"1
2
sin2x.
当x∈[-π,-class="stub"π
2
)时,x+π∈[0,class="stub"π
2
],g(x)=g(x+π)=class="stub"1
2
sin2(x+π)=class="stub"1
2
sin2x.
g(x)在区间[-π,0]上的解析式:g(x)=
-class="stub"1
2
sin2x    x∈[ -class="stub"π
2
,0]
class="stub"1
2
sin2x       x∈ [-π,-class="stub"π
2
)

更多内容推荐