在△ABC中,角A、B、C所对边分别为a、b、c,若bcosB=ccosC成立,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.等腰三角形或直角三角形-数学

题目简介

在△ABC中,角A、B、C所对边分别为a、b、c,若bcosB=ccosC成立,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.等腰三角形或直角三角形-数学

题目详情

在△ABC中,角A、B、C所对边分别为a、b、c,若bcosB=ccosC成立,则△ABC是(  )
A.直角三角形
B.等腰三角形
C.锐角三角形
D.等腰三角形或直角三角形
题型:单选题难度:偏易来源:不详

答案

∵bcosB=ccosC
∴由正弦定理,得sinBcosB=sinCcosC
即2sinBcosB=2sinCcosC,可得sin2B=sin2C
∵B、C∈(0,π),
∴2B=2C或2B+2C=π,解之得B=C或B+C=class="stub"π
2

因此△ABC是等腰三角形或直角三角形
故选:D

更多内容推荐