在△ABC中,已知tanB=cos(C-B)sinA+sin(C-B).(1)试判断△ABC的形状,并给出证明;(2)若∠C=60°,AB=1,求△ABC的面积.-数学

题目简介

在△ABC中,已知tanB=cos(C-B)sinA+sin(C-B).(1)试判断△ABC的形状,并给出证明;(2)若∠C=60°,AB=1,求△ABC的面积.-数学

题目详情

在△ABC中,已知tanB=
cos(C-B)
sinA+sin(C-B)

(1)试判断△ABC的形状,并给出证明;
(2)若∠C=60°,AB=1,求△ABC的面积.
题型:解答题难度:中档来源:不详

答案

(1)由题意得,
cos(C-B)
sinA+sin(C-B)

=
cos(C-B)
sin(C+B)+sin(C-B)

=class="stub"cosCcosB+sinCsinB
2sinCcosB

=tanB=class="stub"sinB
cosB

所以cosCcosB+sinCsinB=2sinCsinB,
即有cosCcosB-sinCsinB=0,
即cos(C+B)=-cosA=0,
所以∠A=90°,即△ABC是直角三角形.
(2)因为∠C=60°,AB=1,
又由(1)得:AC=ABtan30°=
3
3

所以△ABC的面积为class="stub"1
2
×AC×AB=
3
6

更多内容推荐