已知向量.a=(cos3θ2,sin3θ2),.b=(cosθ2,-sinθ2),θ∈[0,π3],(I)求.a..b|.a+.b|的最大值和最小值;(II)若|k.a+.b|=3|.a-k.b|(k

题目简介

已知向量.a=(cos3θ2,sin3θ2),.b=(cosθ2,-sinθ2),θ∈[0,π3],(I)求.a..b|.a+.b|的最大值和最小值;(II)若|k.a+.b|=3|.a-k.b|(k

题目详情

已知向量
.
a
=(cos
2
,sin
2
),
.
b
=(cos
θ
2
,-sin
θ
2
),θ∈[0,
π
3
],
(I)求
.
a
.
.
b
|
.
a
+
.
b
|
的最大值和最小值;
(II)若|k
.
a
+
.
b
|=
3
|
.
a
-k
.
b
|(k∈R),求k的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)∵
.
a
=(cosclass="stub"3θ
2
,sinclass="stub"3θ
2
),
.
b
=(cosclass="stub"θ
2
,-sinclass="stub"θ
2
),
a
b
=cosclass="stub"3θ
2
cosclass="stub"θ
2
-sinclass="stub"3θ
2
sinclass="stub"θ
2
=cos2θ
|
a
+
b
|2
=
a
2
+
b
2
+2
a
b
=2+2cos2θ=4cos2θ
|
a
b
|
=2cosθ,θ∈[0,class="stub"π
3
]

a
b
|
a
+
b
|
=class="stub"cos2θ
2cosθ
=
2cos2θ-1
2cosθ

令t=cosθ,则t∈[class="stub"1
2
,1]
,y=
a
b
|
a
+
b
|
=
2t2-1
2t
=t-class="stub"1
2t
,t∈[class="stub"1
2
,1]
y=1+class="stub"1
2t2
>0

∴y=t-class="stub"1
2t
[class="stub"1
2
,1]
上单调递增
ymax=class="stub"1
2
ymin=-class="stub"1
2

(2)由|k
a
+
b
|=
3
|
a
-k
b
|
可得(k
a
+
b
)
2
=3(
a
-k
b
)
2

k2
a
2
+
b
2
+2k
a
b
=3(
a
2
-2k
a
b
+k2
b
2
)

又∵|
a
|=|
b
|=1

k2+1+2k
a
b
=3(1+k2-2k
a
b
)

a
b
=
1+k2
4k

a
b
=cos2θ
θ∈[0,class="stub"π
3
]
可得,-class="stub"1
2
a
b
≤1

-class="stub"1
2
1+k2
4k
≤1

1+k2
4k
+class="stub"1
2
≥ 0
1+k2
4k
-1≤0

(k+1)2
4k
≥0
k2-4k+1
4k
≤0

解可得,
k=-1或k>0
k<0或2-
3
≤k≤2+
3

∴k=-1或2-
3
≤k≤2+
3

综上可得,k得取值范围为{k|k=-1或2-
3
≤k≤2+
3
}

更多内容推荐