f(x)是定义在R上的奇函数,且当x>0时,f(x)=2+lnx.(1)求f(x)在R上的解析式;(2)求满足f(x)=0的x值.-数学

题目简介

f(x)是定义在R上的奇函数,且当x>0时,f(x)=2+lnx.(1)求f(x)在R上的解析式;(2)求满足f(x)=0的x值.-数学

题目详情

f(x)是定义在R上的奇函数,且当x>0时,f(x)=2+lnx.
(1)求f(x)在R上的解析式;
(2)求满足f(x)=0的x值.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)是定义在R上的奇函数,
且当x>0时,f(x)=2+lnx,
∴当x=0时,f(x)=0,
当x<0时,-f(x)=2+ln(-x),即f(x)=-2-ln(-x),
∴f(x)=
2+lnx,x>0
0,x=0
-2-lnx,x<0
.(5分)
(2)当x>0时,f(x)=2+lnx=0,得lnx=-2,∴x=e-2;
当x=0时,f(x)=0,得x=0;
当x<0时,f(x)=-2-lnx=0,得lnx=-2,∴x=e-2.
∴满足f(x)=0的x值为:x1=0,x2=e-2x3=-e-2.(10分)

更多内容推荐