已知函数f(x)=1-sin2x1-cos2(π2-x)(1)若tanx=-2,求f(x)的值(2)求函数y=cotx[f(x)]的定义域和值域.-数学

题目简介

已知函数f(x)=1-sin2x1-cos2(π2-x)(1)若tanx=-2,求f(x)的值(2)求函数y=cotx[f(x)]的定义域和值域.-数学

题目详情

已知函数f(x)=
1-sin2x
1-cos2(
π
2
-x)

(1)若tanx=-2,求f(x)的值
(2)求函数y=cotx[f(x)]的定义域和值域.
题型:解答题难度:中档来源:广西一模

答案

(1)f(x)=class="stub"1-sin2x
1-cos2(class="stub"π
2
-x)
=
(sinx-cosx)2
1-sin2x
=
sin2x-2sinxcosx+cos2x 
cos 2x

∴f(x)=tan2x-2tanx+1
∵tanx=-2,
∴f(x)=(-2)2-2×(-2)+1=9;
(2)y=cotx[f(x)]=cotx(tan2x-2tanx+1)=tanx+cotx-2
∵要使tanx、cotx有意义,须满足x≠class="stub"π
2
+kπ且x≠kπ,k∈Z
∴函数y=cotx[f(x)]的定义域为{x|x≠class="stub"1
2
,k∈Z}
∵|tanx+cotx|≥2
tanx•cotx
=2
∴tanx+cotx≥2或tanx+cotx≤-2
由此可得y=tanx+cotx-2的取值范围为(-∞,-4]∪[0,+∞)
综上所述,函数y=cotx[f(x)]的定义域是{x|x≠class="stub"1
2
,k∈Z},值域为(-∞,-4]∪[0,+∞).

更多内容推荐