已知△ABC的三个内角A、B、C所对的三边分别是a、b、c,平面向量m=(1,sin(B-A)),平面向量n=(sinC-sin(2A),1).(I)如果c=2,C=π3,且△ABC的面积S=3,求a

题目简介

已知△ABC的三个内角A、B、C所对的三边分别是a、b、c,平面向量m=(1,sin(B-A)),平面向量n=(sinC-sin(2A),1).(I)如果c=2,C=π3,且△ABC的面积S=3,求a

题目详情

已知△ABC的三个内角A、B、C所对的三边分别是a、b、c,平面向量
m
=(1,sin(B-A))
,平面向量
n
=(sinC-sin(2A),1).
(I)如果c=2,C=
π
3
,且△ABC的面积S=
3
,求a的值;
(II)若
m
n
,请判断△ABC的形状.
题型:解答题难度:中档来源:不详

答案

(I)由余弦定理及已知条件得a2+b2-ab=4,
△ABC的面积等于
3

class="stub"1
2
absinC=
3

∴ab=4.
联立方程组得
a2+b2-ab=4
ab=4
解得a=2,b=2

∴a=2.
(II)∵
m
n
,∴sinC-sin2A+sin(B-A)=0.
化简得cosA(sinB-sinA)=0.
∴csoA=0或sinB-sinA=0.
cosA=0时,A=class="stub"π
2

此时△ABC是直角三角形;
当sinB-sinA=0时,即sinB=sinA,
由正弦定理得b=a,
此时△ABC为等腰三角形.
∴△ABC是直角三角形或等腰三角形.

更多内容推荐