已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx+2(x∈R),(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sinx(x∈R)的图

题目简介

已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx+2(x∈R),(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sinx(x∈R)的图

题目详情

已知函数f(x)=2cosxsin(x+
π
3
)-
3
sin2x+sinxcosx+2
(x∈R),
(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象可以由函数y=sinx(x∈R)的图象经过怎样的变换得到?
题型:解答题难度:中档来源:不详

答案

(1)f(x)=2cosxsin(x+class="stub"π
3
)-
3
sin2x+sinxcosx+2
=2sin(2x+class="stub"π
3
)+2
∴最小正周期T=class="stub"2π
2
=π,当2kπ-class="stub"π
2
≤2x+class="stub"π
3
≤2kπ+class="stub"π
2
时,即kπ-class="stub"5π
12
≤x≤kπ+class="stub"π
12
,函数单调增
∴函数的单调增区间为:[kπ-class="stub"5π
12
,kπ+class="stub"π
12
](k∈Z)
(2)由函数y=sinx纵坐标不变,横坐标扩大2倍得到y=sin2x,再向左平移class="stub"π
6
个单位得到函数y=sin(2x+class="stub"π
3

纵坐标不变,横坐标扩大2倍得到y=2sin(2x+class="stub"π
3
),再把图象向上平移2个单位得到函数y=2sin(2x+class="stub"π
3
)+2

更多内容推荐