已知函数g(x)=12sin(2x+2π3),f(x)=acos2(x+π3)+b,且函数y=f(x)的图象是函数y=g(x)的图象按向量a=(-π4,12)平移得到的.(1)求实数a、b的值;(2)

题目简介

已知函数g(x)=12sin(2x+2π3),f(x)=acos2(x+π3)+b,且函数y=f(x)的图象是函数y=g(x)的图象按向量a=(-π4,12)平移得到的.(1)求实数a、b的值;(2)

题目详情

已知函数g(x)=
1
2
sin(2x+
3
),f(x)=acos2(x+
π
3
)+b,且函数y=f(x)的图象是函数y=g(x)的图象按向量a=(-
π
4
1
2
)平移得到的.
(1)求实数a、b的值;
(2)设h(x)=g(x)-
3
f(x),求h(x)的最小值及相应的x的值.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=acos2(x+class="stub"π
3
)+b=class="stub"a
2
cos(2x+class="stub"2π
3
)+class="stub"a
2
+b,①
g(x)=class="stub"1
2
sin(2x+class="stub"2π
3
)的图象按向量a=(-class="stub"π
4
class="stub"1
2
)平移得到
f(x)=class="stub"1
2
sin[2(x+class="stub"π
4
)+class="stub"2π
3
]+class="stub"1
2
=class="stub"1
2
cos(2x+class="stub"2π
3
)+class="stub"1
2
,②
比较①②可得:a=1,b=0;
(2)∵h(x)=g(x)-
3
f(x)=class="stub"1
2
sin(2x+class="stub"2π
3
)-
3
2
cos(2x+class="stub"2π
3
)-class="stub"1
2

=sin(2x+class="stub"π
3
)-class="stub"1
2

当2x+class="stub"π
3
=2kπ-class="stub"π
2
,即x=kπ-class="stub"5π
12
(k∈Z)时,h(x)有最小值,h(x)min=-class="stub"3
2

更多内容推荐