设函数f(x)=2sin(ωx+π3)(ω>0,x∈R),且以π为最小正周期.(Ⅰ)求f(π2)的值;(Ⅱ)已知f(a2+π12)=1013,a∈(-π2,0),求sin(a-π4)的值.-数学

题目简介

设函数f(x)=2sin(ωx+π3)(ω>0,x∈R),且以π为最小正周期.(Ⅰ)求f(π2)的值;(Ⅱ)已知f(a2+π12)=1013,a∈(-π2,0),求sin(a-π4)的值.-数学

题目详情

设函数f(x)=2sin(ωx+
π
3
)(ω>0,x∈R),且以π为最小正周期.
(Ⅰ)求f(
π
2
)的值; 
(Ⅱ)已知f(
a
2
+
π
12
)=
10
13
,a∈(-
π
2
,0),求sin(a-
π
4
)的值.
题型:解答题难度:中档来源:不详

答案

解(Ⅰ)∵T=class="stub"2π
ω
=π,∴ω=2,(2分)
∴函数f(x)=2sin(2x+class="stub"π
3
).    (3分)
∴f(class="stub"π
2
)=2sin(2×class="stub"π
2
+class="stub"π
3
)=-2sinclass="stub"π
3
=-
3
. (5分)
(Ⅱ)∵f(class="stub"a
2
+class="stub"π
12
)=class="stub"10
13
=2sin(a+class="stub"π
2
)=2cosa,∴cosa=class="stub"5
13
.(7分)
∵a∈(-class="stub"π
2
,0),∴sina=-
1-cos2a
=-class="stub"12
13
.    (9分)
∴sin(a-class="stub"π
4
)=sina•cosclass="stub"π
4
-cosa•sin class="stub"π
4
=
-17
2
26
.      (12分)

更多内容推荐