已知向量m=(1,1),向量n与向量m夹角为34π,且m•n=-1,(1)求向量n;(2)若向量n与向量q=(1,0)的夹角为π2,向量p=(cosA,2cos2c2),其中A、C为△ABC的内角,且

题目简介

已知向量m=(1,1),向量n与向量m夹角为34π,且m•n=-1,(1)求向量n;(2)若向量n与向量q=(1,0)的夹角为π2,向量p=(cosA,2cos2c2),其中A、C为△ABC的内角,且

题目详情

已知向量
m
=(1,1),向量
n
与向量
m
夹角为
3
4
π
,且
m
n
=-1,
(1)求向量
n

(2)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
c
2
),其中A、C为△ABC的内角,且A、B、C依次成等差数列,试求|
n
+
p
|
的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)设
n
=(x,y)
则由<
m
n
>=class="stub"3
4
π
得:cos<
m
n
>=
m
n
|
m
||
n
|
=class="stub"x+y
2
x2+y2
=-
2
2

m
n
=-1得x+y=-1  ②
联立①②两式得
x=0
y=-1
x=-1
y=0

n
=(0,-1)或(-1,0)
(2)∵<
n
q
>=class="stub"π
2

n
q
=0
n
=(1,0)则
n
q
=-1≠0
n
≠(-1,0)∴
n
=(0,-1)
∵2B=A+C,A+B+C=π
⇒B=class="stub"π
3
∴C=class="stub"2π
3
-A

n
+
p
=(cosA,2cos2class="stub"c
2
-1

=(cosA,cosC)
|
n
+
p
|
=
cos2A+cos2C
=
class="stub"1+cos2A
2
+class="stub"1+cos2C
2
=
class="stub"cos2A+cos2C
2
+1

=
cos2A+cos(class="stub"4π
3
-2A)
2
+1


=
cos2A-class="stub"cos2A
2
-
3
2
sin2A
2
+1

=
class="stub"1
2
cos2A-
3
2
sin2A
2
+1

=
cos(2A+class="stub"π
3
)
2
+1

∵0<A<class="stub"2π
3
∴0<2A<class="stub"4π
3

class="stub"π
3
<2A+class="stub"π
3
<class="stub"5π
3

∴-1≤cos(2A+class="stub"π
3
)<class="stub"1
2

|
n
+
p
|
∈[
2
2
5
2

更多内容推荐