设α∈(0,π2),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,当x≥y时,f(x+y2)=f(x)sinα+(1-sinα)f(y).(Ⅰ)求f(12),f(14);(Ⅱ)求α的

题目简介

设α∈(0,π2),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,当x≥y时,f(x+y2)=f(x)sinα+(1-sinα)f(y).(Ⅰ)求f(12),f(14);(Ⅱ)求α的

题目详情

α∈(0,
π
2
)
,函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,当x≥y时,f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)

(Ⅰ)求f(
1
2
)
f(
1
4
)

(Ⅱ)求α的值;
(Ⅲ)求g(x)=
3
sin(α-2x)+cos(α-2x)
的单调增区间.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)令x=1,y=0,f(class="stub"1
2
)=f(1)sinα+(1-sinα)f(0)=sinα

x=class="stub"1
2
,y=0,f(class="stub"1
4
)=f(class="stub"1
2
)sinα=sin2α

(Ⅱ)令x=1,y=class="stub"1
2
f(class="stub"3
4
)=f(1)sinα+(1-sinα)f(class="stub"1
2
)

=sinα+(1-sinα)sinα
=-sin2α+2sinα.
x=class="stub"3
4
y=class="stub"1
4
f(class="stub"1
2
)=f(class="stub"3
4
)sinα+(1-sinα)f(class="stub"1
4
)=-2sin3α+3sin2α

∴-2sin3α+3sin2α=sinα
sinα=class="stub"1
2

α∈(0,class="stub"π
2
)

α=class="stub"π
6

(Ⅲ)g(x)=
3
sin(class="stub"π
6
-2x)+cos(class="stub"π
6
-2x)

=2sin(class="stub"π
6
-2x+class="stub"π
6
)=2sin(class="stub"π
3
-2x)=2sin(2x+class="stub"2π
3
)

要使g(x)单调增区间,
2kπ-class="stub"π
2
≤2x+class="stub"2π
3
≤2kπ+class="stub"π
2
k∈z

∴单调增区间是:[kπ-class="stub"7π
12
,kπ-class="stub"π
12
](k∈z)

更多内容推荐