优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 化简求值①tan70°cos10°(3tan20°-1)②已知sin(α+π3)+sinα=-435,(-π2<α<0),求cosα的值.-数学
化简求值①tan70°cos10°(3tan20°-1)②已知sin(α+π3)+sinα=-435,(-π2<α<0),求cosα的值.-数学
题目简介
化简求值①tan70°cos10°(3tan20°-1)②已知sin(α+π3)+sinα=-435,(-π2<α<0),求cosα的值.-数学
题目详情
化简求值
①
tan70°cos10°(
3
tan20°-1)
②已知
sin(α+
π
3
)+sinα=-
4
3
5
,
(-
π
2
<α<0)
,求cosα的值.
题型:解答题
难度:中档
来源:不详
答案
①tan70°cos10°(
3
tan20°-1)
=cot20°cos10°(
3
sin20°
cos20°
-1)
=cot20°cos10°(
3
sin20°-cos20°
cos20°
)
=
class="stub"cos20°
sin20°
×cos10°×(
2(
3
2
sin20°-
class="stub"1
2
cos20°)
cos20°
)
=
class="stub"cos20°
sin20°
×cos10°×(
2sin(20°-30°)
cos20°
)
=
class="stub"cos20°
sin20°
×(-
class="stub"sin20°
cos20°
)
=-1
②∵
sin(α+
class="stub"π
3
)+sinα=-
4
3
5
,
∴
class="stub"1
2
sinα+
3
2
cosα+sinα=
-
4
3
5
即
3
sin(α+
class="stub"π
6
)=
-
4
3
5
∴sin(α+
class="stub"π
6
)=-
class="stub"4
5
,又∵
-
class="stub"π
2
<α<0
,
∴cos(α+
class="stub"π
6
)=
class="stub"3
5
∴cosα=cos(α+
class="stub"π
6
-
class="stub"π
6
)=
3
2
cos(α+
class="stub"π
6
)+
class="stub"1
2
sin(α+
class="stub"π
6
)=
3
2
×
class="stub"3
5
+
class="stub"1
2
×(-
class="stub"4
5
)=
3
3
-4
10
上一篇 :
在等式(tan10°-3)•sin(*)=-2
下一篇 :
已知△ABC的三个内角A、B、C所
搜索答案
更多内容推荐
已知△ABC中,A,B,C的对边分别为a,b,c,且(AB)2=AB•AC+BA•BC+CA•CB.(Ⅰ)判断△ABC的形状,并求t=sinA+sinB的取值范围;(Ⅱ)若不等式a2(b+c)+b2(
在△ABC中,角A,B,C所对的边的长分别为a,b,c,若asinA+bsinB<csinC,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形-数学
若sinAa=cosBb=cosCc则△ABC为()A.等边三角形B.等腰三角形C.有一个内角为30°的直角三角形D.有一个内角为30°的等腰三角形-数学
设函数f(x)=m(1+sin2x)+cos2x,x∈R,且函数y=f(x)的图象经过点(π4,2).(1)求实数m的值;(2)求函数f(x)的最小值及此时x值的集合.-数学
已知函数f(x)=2asinx2cosx2+sin2x2-cos2x2(a∈R).(Ⅰ)当a=1时,求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)当a=2时,在f(x)=0的条件下,求cos2x
已知sinθ=35,θ∈(0,π2),求tanθ、sin(θ+π3)和cos2θ的值.-数学
曲线y=2cos(x+π4)•cos(x-π4)和直线y=12在y轴右侧的交点横坐标按从小到大依次记为P1、P2、…、Pn,则|P2P2n|=()A.πB.2nπC.(n-1)πD.n-12π-数学
已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx+2(x∈R),(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sinx(x∈R)的图
设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为2π3.(1)求ω的值;(2)当x∈[0,π6]时,求f(x)的最值.(3)若函数y=g(x)的图象是由y=f(x)
求值:1-2sin10°cos10°cos10°-1-cos2170°.-数学
已知f(x)=3+2sinxcosx-23sin2x,(Ⅰ)求f(x)的最小正周期;(Ⅱ)写出函数f(x)的单调减区间.-数学
已知f(x)=sin2x-cos2x+11+ctgx①化简f(x);②若sin(x+π4)=35,且π4<x<34π,求f(x)的值.-数学
sin(-π3)的值为______.-数学
已知向量a=(sinx3,cosx3),b=(cosx3,3cosx3),函数f(x)=a•b,(1)求函数f(x)的单调递增区间;(2)如果△ABC的三边a、b、c,满足b2=ac,且边b所对的角为
函数y=asinx+2bcosx图象的一条对称轴方程是x=π4,则直线ax+by+1=0与直线x+y+2=0的夹角大小是()A.arctan3B.arctan13C.arctan(-13)D.以上均不
函数y=cos2(x-π12)+sin2(x+π12)-1的最小正周期为______.-数学
给出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;我们可以根据公式将函数g(x)=sinx+3cosx化为:g(x)=2(12sin
已知f(x)=sin2(x-π6)+sin2(x+π6)+3sinxcosx.(1)求f(x)的最大值以及取得最大值时自变量x的取值构成的集合;(2)当自变量x∈[-π12,5π12]时,求f(x)的
函数f(x)=sinx-sin(x-π3),(0≤x≤π2)的最小值为______.-数学
在△ABC中,已知c=2acosB,则△ABC的形状为______.-数学
已知函数f(x)=sin(x+π6)+sin(x-π6)+cosx+a的最大值为1.(1)求常数a的值;(2)求使f(x)≥0成立的x的取值集合;(3)若x∈[0,π],求函数的值域.-数学
已知sinxcosx-1=-12,则1+cosxsinx=.-数学
已知△ABC两内角A、B的对边边长分别为a、b,且acosA=bcosB,则△ABC的形状是______.-数学
已知△ABC三内角A、B、C所对的边a,b,c,且a2+c2-b2a2+b2-c2=c2a-c.(1)求∠B的大小;(2)若△ABC的面积为334,求b取最小值时的三角形形状.-数学
当π2<α<π时,|sinα|sinα-cosα|cosα|的值是()A.1B.-1C.2D.-2-数学
已知:α为第四象限角,且sin(π-α)=-13,则tanα=______.-数学
已知向量m=(2sinx-cosx,sinx),n=(cosx-sinx,0),且函数f(x)=(m+2n)•m.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)将函数f(x)向左平移π4个单位得到函数g(x
已知D是△ABC所在平面上任意一点,若(AB-BC)•(AD-CD)=0,则△ABC一定是()A.直角三角形B.等腰直角三角形C.等腰三角形D.等边三角形-数学
已知A、B、C是三角形的三个顶点,AB2=AB•AC+AB•CB+BC•CA,则△ABC为()A.等腰三角形B.直角三角开C.等腰直角三角形D.既非等腰三角形又非直角三角形-数学
在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.-数学
已知a=(cosπ2,32-cosπ2),b=(32+cosx2,sinx2)且a∥b.求1+2cos(2x-π4)sin(x+π2)的值.-数学
函数f(x)=cosx(cosx+sinx),x∈[0,π4]的值域是()A.[1,12+22]B.[0,12+22]C.[12-22,0]D.[12-22,1]-数学
已知函数f(x)=23sinx3cosx3-2sin2x3.(Ⅰ)若x∈[0,π],求函数f(x)的值域;(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(C)=1,且b2=ac,求si
在△ABC中,角A,B,C的对边分别为a,b,c,且cosB=34.(Ⅰ)求sin2B2+sin2B的值;(Ⅱ)若b=3,当ac取最大值时,求△ABC的面积.-数学
△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件①b=26,c=15,C=23°;②a=84,b=56,c=74;③A=34°,B=56°,c=68;④a=15,b=10,A=60°能唯一
函数y=sinxcosx+3cos2x-32的图象的一个对称中心是()A.(π6,0)B.(5π6,0)C.(-2π3,32)D.(π3,-32)-数学
已知函数f(x)=-2sin2x+23sinxcosx+1.(1)求f(x)的最小正周期及对称中心;(2)若x∈[-π6,π3],求f(x)的最大值和最小值.-数学
已知函数f(x)=2cos2x+23sinxcosx①求函数f(x)的最小正周期;②在△ABC中,a,b,c为内角A,B,C的对边,若f(C)=2,a+b=4,求△ABC的最大面积.-数学
已知锐角△ABC中,三个内角为A、B、C,两向量p=(2-2sinA)e1+(cosA+sinA)e2,q=(sinA-cosA)e1+(1+sinA)e2,其中e1,e2是两个不共线向量.又知p与q
在△ABC中,记外接圆半径为R.(1)求证:2Rsin(A-B)=a2-b2c;(2)若(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断△ABC的形状.-数学
已知△ABC中,AB=a,CA=b,当a•b>0时,△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定-数学
已知函数f(x)=cosxcos(π6-x),则f(x)+f(π3-x)的值为______.-数学
设函数f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=π6处取得最大值2,其图象与x轴的相邻两个交点的距离为π2.(Ⅰ)求f(x)的解析式;(Ⅱ)求函数g(x)=6cos4x-s
1sin10°-3cos10°=______.-数学
函数y=4sin(3x+π4)+3cos(3x+π4)的最小正周期是()A.6πB.2πC.2π3D.π3-数学
求sin220°+cos250°+sin20°cos50°的值.-数学
在△ABC中,满足tanA•tanB>1,则这个三角形是()A.正三角形B.等腰三角形C.锐角三角形D.钝角三角形-数学
已知函数f(x)=sin(2x+π6)+2sin2(x+π6)-2cos2x+a-1(a∈R,a为常数)(1)求函数f(x)的最小正周期(2)求函数f(x)的单调递增区间(3)若x∈[0,π2]时,f
化简11-11-11-csc2x.-数学
在△ABC中,有命题:①若AB•AC>0,则△ABC为锐角三角形②AB+BC+CA=0③(AB+AC)•(AB-AC)=0,则△ABC为等腰三角形④AB-AC=BC.上述命题正确的是()A.①②B.①
返回顶部
题目简介
化简求值①tan70°cos10°(3tan20°-1)②已知sin(α+π3)+sinα=-435,(-π2<α<0),求cosα的值.-数学
题目详情
①tan70°cos10°(
②已知sin(α+
答案
=cot20°cos10°(
=cot20°cos10°(
=
=
=
=-1
②∵sin(α+
∴
即
∴sin(α+
∴cos(α+
∴cosα=cos(α+