f(x)=2sin(ωx-π3)cosωx+2cos(2ωx+π6),其中ω>0.(1)若ω=2,求函数f(x)的最小正周期;(2)若y=f(x)满足f(π+x)=f(π-x)(x∈R),且ω∈(12

题目简介

f(x)=2sin(ωx-π3)cosωx+2cos(2ωx+π6),其中ω>0.(1)若ω=2,求函数f(x)的最小正周期;(2)若y=f(x)满足f(π+x)=f(π-x)(x∈R),且ω∈(12

题目详情

f(x)=2sin(ωx-
π
3
)cosωx+2cos(2ωx+
π
6
)
,其中ω>0.
(1)若ω=2,求函数f(x)的最小正周期;
(2)若y=f(x)满足f(π+x)=f(π-x)(x∈R),且ω∈(
1
2
,1)
,求函数f(x)的单调递减区间.
题型:解答题难度:中档来源:不详

答案

根据题意,得f(x)=2sin(ωx-class="stub"π
3
)cosωx+2cos(2ωx+class="stub"π
6
)
=(sinωx-
3
cosωx)cosωx+2(cos2ωxcosclass="stub"π
6
-sin2ωcosclass="stub"π
6
)

∵2sinωxcosωx=sin2ωx,cos2ωx=class="stub"1
2
(1+cos2ωx)
∴f(x)
=class="stub"1
2
sin2ωx-
3
cos2ωx+
3
cos2ωx-sin2ωx

=-class="stub"1
2
sin2ωx-
3
×class="stub"1+cos2ωx
2
+
3
cos2ωx

=
3
2
cos2ωx-class="stub"1
2
sin2ωx-
3
2
=cos(2ωx+class="stub"π
6
)-
3
2
…(5分)
(1)若ω=2,则函数表达式为:f(x)=cos(4x+class="stub"π
6
)-
3
2

因此,f(x)的最小正周期T=class="stub"2π
4
=class="stub"π
2
…(7分)
(2)∵y=f(x)满足f(π+x)=f(π-x)(x∈R)
∴直线x=π是函数图象的对称轴,可得cos(2ωx+class="stub"π
6
)=1
cos(2ωx+class="stub"π
6
)=-1

因此,
2ωπ+class="stub"π
6
=kπ,(k∈Z)
.解之得
ω=class="stub"k
2
-class="stub"1
12
,(k∈Z)

又∵ω∈(class="stub"1
2
,1)
,∴取整数k=2,得ω=class="stub"11
12

可得函数解析式为:f(x)=cos(class="stub"11
6
x+class="stub"π
6
)-
3
2

解不等式2kπ≤class="stub"11
6
x+class="stub"π
6
≤2kπ+π,(k∈Z)
,得class="stub"12
11
kπ-class="stub"π
11
≤x≤class="stub"12
11
kπ+class="stub"5π
11
,(k∈Z)

∴函数f(x)的单调递减区间为[class="stub"12
11
kπ-class="stub"π
11
,class="stub"12
11
kπ+class="stub"5π
11
],(k∈Z)
.…(13分)

更多内容推荐