已知m=(Asinx3,A),n=(3,cosx3),f(x)=m•n,且f(π4)=2.(1)求A的值;(II)设α、β∈[0,π2],f(3α+π)=3017,f(3β-72π)=-85,求cos

题目简介

已知m=(Asinx3,A),n=(3,cosx3),f(x)=m•n,且f(π4)=2.(1)求A的值;(II)设α、β∈[0,π2],f(3α+π)=3017,f(3β-72π)=-85,求cos

题目详情

已知
m
=(Asin
x
3
,A),
n
=(
3
,cos
x
3
),f(x)=
m
n
,且f(
π
4
)=
2

(1)求A的值;
(II)设α、β∈[0,
π
2
],f(3α+π)=
30
17
,f(3β-
7
2
π
)=-
8
5
,求cos(α+β)的值.
题型:解答题难度:中档来源:泰安一模

答案

(1)由题意可得f(x)=
m
n
=
3
Asinclass="stub"x
3
+Acosclass="stub"x
3
=2Asin(class="stub"x
3
+class="stub"π
6
).
再由 f(class="stub"π
4
)=2Asin(class="stub"π
12
+class="stub"π
6
)=
2
A=
2
,可得A=1.
(II)由(1)可得 f(x)=2Asin(class="stub"x
3
+class="stub"π
6
),∴f(3α+π)=2sin(α+class="stub"π
3
+class="stub"π
6
)=2cosα=class="stub"30
17
,可得 cosα=class="stub"15
17

又 f(3β-class="stub"7
2
π
)=2sin(β-class="stub"7π
6
+class="stub"π
6
)=-2sinβ=-class="stub"8
5
,sinβ=class="stub"4
5

再由 α、β∈[0,class="stub"π
2
],可得 sinα=class="stub"8
17
,cosβ=class="stub"3
5

∴cos(α+β)=cosαcosβ-sinαsinβ=class="stub"15
17
×class="stub"3
5
-class="stub"8
17
×class="stub"4
5
=class="stub"13
85

更多内容推荐