已知数列{an}中,a1=1,an<an+1,设bn=an+1-anan+1•an+1,Sn=b1+b2+…+bn,求证:(Ⅰ)bn<2(1an-1an+1);(Ⅱ)若数列{an}是公比为q且q≥3的

题目简介

已知数列{an}中,a1=1,an<an+1,设bn=an+1-anan+1•an+1,Sn=b1+b2+…+bn,求证:(Ⅰ)bn<2(1an-1an+1);(Ⅱ)若数列{an}是公比为q且q≥3的

题目详情

已知数列{an}中,a1=1,an<an+1,设bn=
an+1-an
an+1
an+1
,Sn=b1+b2+…+bn,求证:
(Ⅰ)bn<2(
1
an
-
1
an+1
)

(Ⅱ)若数列{an}是公比为q且q≥3的等比数列,则Sn<1.
题型:解答题难度:中档来源:不详

答案

证明:(Ⅰ)由题意可知an>0
bn-2(class="stub"1
an
-class="stub"1
an+1
)

=
an+1-an
an+1
an+1
-2(class="stub"1
an
-class="stub"1
an+1
)

=
an+1-an
an+1
an+1
-2
an+1
-
an
an+1
an

=
(
an+1
-
an
)(
an+1
an
+an-2an+1)
an+1
an+1
an

又an<an+1,∴
an+1
-
an
>0
an+1
an
an+1

an+1
an
+an-2an+1<0

(
an+1
-
an
)(
an+1
an
+an-2an+1)
an+1
an+1
an
<0

bn<2(class="stub"1
an
-class="stub"1
an+1
)

(Ⅱ)数列{an}是首项a1=1,公比为q且q≥3的等比数列,
an=a1qn-1=qn-1
bn=
an+1-an
an+1
an+1
=
qn-qn-1
qclass="stub"3n
2
=q-class="stub"n
2
(1-q-1)

Sn=b1+b2+…+bn
=(1-q-1)(q-class="stub"1
2
+q-class="stub"2
2
+q-class="stub"3
2
+…+q-class="stub"n
2
)

=(1-q-1)•
q-class="stub"1
2
(1-q-class="stub"n
2
)
1-q-class="stub"1
2

=(class="stub"1
q
+class="stub"1
q
)(1-class="stub"1
qn
)

∵q≥3,∴0<class="stub"1
q
+class="stub"1
q
≤class="stub"1
3
+class="stub"1
3
=
3
+1
3
<1

0<1-class="stub"1
qn
<1

Sn=(class="stub"1
q
+class="stub"1
q
)(1-class="stub"1
qn
)<1

更多内容推荐