优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在数列{an}中,已知a1=14,an+1an=14,bn+2=3log14an(n∈N*).(1)求数列{an}的通项公式;(2)求证:数列{bn}是等差数列;(3)设数列{cn}满足cn=an•b
在数列{an}中,已知a1=14,an+1an=14,bn+2=3log14an(n∈N*).(1)求数列{an}的通项公式;(2)求证:数列{bn}是等差数列;(3)设数列{cn}满足cn=an•b
题目简介
在数列{an}中,已知a1=14,an+1an=14,bn+2=3log14an(n∈N*).(1)求数列{an}的通项公式;(2)求证:数列{bn}是等差数列;(3)设数列{cn}满足cn=an•b
题目详情
在数列{a
n
}中,
已知
a
1
=
1
4
,
a
n+1
a
n
=
1
4
,
b
n
+2=3lo
g
1
4
a
n
(n∈N*)
.
(1)求数列{a
n
}的通项公式;
(2)求证:数列{b
n
}是等差数列;
(3)设数列{c
n
}满足c
n
=a
n
•b
n
,求{c
n
}的前n项和S
n
.
题型:解答题
难度:中档
来源:济南三模
答案
(1)∵
a
n+1
a
n
=
class="stub"1
4
∴数列{an}是首项为
class="stub"1
4
,公比为
class="stub"1
4
的等比数列,
∴
a
n
=(
class="stub"1
4
)
n
(n∈N*)
.(2分)
(2)∵
b
n
=3lo
g
class="stub"1
4
a
n
-2
(3分)
∴
b
n
=3lo
g
class="stub"1
4
(
class="stub"1
4
)
n
-2=3n-2
.(4分)
∴b1=1,公差d=3
∴数列{bn}是首项b1=1,公差d=3的等差数列.(5分)
(3)由(1)知,
a
n
=(
class="stub"1
4
)
n
,
b
n
=3n-2(n∈N*)
∴
c
n
=(3n-2)×(
class="stub"1
4
)
n
,(n∈N*)
.(6分)
∴
S
n
=1×
class="stub"1
4
+4×(
class="stub"1
4
)
2
+7×(
class="stub"1
4
)
3
++(3n-5)×(
class="stub"1
4
)
n-1
+(3n-2)×(
class="stub"1
4
)
n
,
于是
class="stub"1
4
S
n
=1×(
class="stub"1
4
)
2
+4×(
class="stub"1
4
)
3
+7×(
class="stub"1
4
)
4
++(3n-5)×(
class="stub"1
4
)
n
+(3n-2)×(
class="stub"1
4
)
n+1
(10分)
两式相减得
class="stub"3
4
S
n
=
class="stub"1
4
+3[(
class="stub"1
4
)
2
+(
class="stub"1
4
)
3
++(
class="stub"1
4
)
n
]-(3n-2)×(
class="stub"1
4
)
n+1
=
class="stub"1
2
-(3n+2)×(
class="stub"1
4
)
n+1
.(12分)
∴
S
n
=
class="stub"2
3
-
class="stub"12n+8
3
×(
class="stub"1
4
)
n+1
(n∈N*)
.(14分)
上一篇 :
已知数列{an}满足a1=1,a2=2,an+2
下一篇 :
已知:对于数列{an},定义{△an}为
搜索答案
更多内容推荐
已知数列{an}的前n项和Sn=1-5+9-13+17-21+…+(-1)n+1(4n-3),则S22-S11的值是______.-数学
数列1,1+2,1+2+22,…,1+2+22+…+2n-1,…的前99项和为()A.2100-101B.299-101C.2100-99D.299-99-数学
已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对n∈N+均有c
已知数列{an},其前n项和Sn满足Sn+1=2Sn+1,且a1=1.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)求数列{nan}的前n项和Tn.-数学
已知数列{an}是等差数列,且a1=2,12an+1-12an=2(cos2π6-sin2π6)(1)求数列{an}的通项公式;(2)令bn=an•3n+n,求数列{bn}的前n项和Tn.-数学
求数列1,312,514,…(2n-1)+12n-1…的前n项和.-数学
已知等差数列{an}的公差不为零,且a3=5,a1,a2.a5成等比数列(I)求数列{an}的通项公式:(II)若数列{bn}满足b1+2b2+4b3+…+2n-1bn=an且数列{bn}的前n项和T
已知正数数列{cn}的前n项和为Sn,且满足Sn+cn=1(n∈N*).(1)求数列{cn}的通项公式;(2)设an=1cn,探究是否存在数列{bn},使得a1b1+a2b2+…+anbn=(2n一1
设数列{an}的首项a1=-7,a2=5,且满足an+2=an+2(n∈N+),则a1+a3+a5+…+a18=______.-数学
等差数列{an}中,前n项的和为Sn,若a7=1,a9=5,那么S15等于()A.90B.45C.30D.452(45,2)-数学
设数列{an}满足a1=1,a2=2,an=13(an-1+2an-2)(n=3,4,…).数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+b
设数列{an}是公差为d的等差数列,其前n项和为Sn.(1)已知a1=1,d=2,(ⅰ)求当n∈N*时,Sn+64n的最小值;(ⅱ)当n∈N*时,求证:2S1S3+3S2S4+…+n+1SnSn+2<
已知数列{an}满足a1=2,an+1=5an-133an-7(n∈N*),则数列{an}的前100项的和为______.-数学
已知函数f(n)=n2cos(nπ),且an=f(n),则a1+a2+a3+…+a100=()A.0B.100C.5050D.10200-数学
将数列{an}中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:①在数列{bn}中,b1=1,对于任何n∈N-数学
数列{an}的通项an=n(cos2n3-sin2n3),其前n项和为Sn,则S30=______.-数学
设数列{an}的前n项和为Sn,已知a1=1,an+1=3Sn+1,n∈N*.(Ⅰ)写出a2,a3的值,并求出数列{an}的通项公式;(Ⅱ)求数列{nan}的前n项和Tn.-数学
已知数列{an}的前n项和为Sn,且a1=14,an+1=Sn+t16(n∈N*,t为常数).(Ⅰ)若数列{an}为等比数列,求t的值;(Ⅱ)若t>-4,bn=lgan+1,数列{bn}前n项和为Tn
已知数列{an}的前n项和为Sn,前n项积为Tn.(1)若2Sn=1-an,n∈N+,求an.(2)若2Tn=1-an,an≠0,证明{1Tn}为等差数列,并求an.(3)在(2)的条件下,令Mn=T
已知数列{an}2an+1=an+an+2(n∈N*),它的前n项和为Sn且a5=5,S7=28(1)求数列{1Sn}前n项的和Tn(2)若数列{bn}满足b1=1,bn+1=bn+qan(q>0)求
定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5-数学
设同时满足条件:①bn+bn+22≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界”数列.(Ⅰ)若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=
Sn=213+419+6127+…+(2n+13n)=______.-数学
设f(x)=13x+3,利用课本中推导等差数列前n项和公式的方法,可求得f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值为()A.3B.133C.28
已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是等比数列{bn}的第二项,第三项,第四项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对任意自然数-数
设关于x的不等式x2-x<2nx(n∈N*)的解集中整数的个数为an,数列{an}的前几项和为Sn,则S20112011的值为______.-数学
为迎接祖国60岁生日,某公园10月1日向游人免费开放一天,早晨7时有2人进入公园,10分钟后有4人进去并出来1人,20分钟后进去6人并出来1人,30分钟后进去10人并出来1人,40分钟-数学
数列{an}满足an=n,n=2k-1ak,n=2k,其中k∈N*,设f(n)=a1+a2+…+a2n-1+a2n,则f(2013)-f(2012)等于______.-数学
已知等差数列{an}的前n项和为Sn,且a4-a2=4,S5=30等比数列{bn}中,bn+1=3bn,n∈N+,b1=3.(1)求an,bn;(2)求数列{an•bn}的前n项和Tn.-数学
11×2+12×3+13×4+14×5+…+12012×2013=______.-数学
已知等比数列{an}的前n项和Sn=2n-1,则a12+a22+…an2=______.-数学
已知Sn是非零数列{an}的前n项和,且Sn=2an-1,则S2011等于()A.1-22010B.22011-1C.22010-1D.1-22011-数学
已知数列{an}满足a1=2,an+1=an-1an,n∈N*,则数列{an}的前2013项的和S2013=______.-数学
设数列{an}的前n项和Sn=(-1)n(2n2+4n+1)-1,n∈N*.(1)求数列{an}的通项公式an;(2)记bn=(-1)nan,求数列{bn}前n项和Tn.-数学
数列{an}满足a1=1,an+1=an+n+1(n∈N*),则1a1+1a2+…+1a2013等于()A.20122013B.40242013C.20131007D.10061007-数学
已知数列{an}的前n项和记为Sn,且a1=2,an+1=Sn+2.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若cn=nan,求数列{cn}的前n项和Tn.-数学
已知数列{an}的前n项和,Sn=n2+2n+1.(1)求数列{an}的通项公式an;(2)记Tn=1a1a2+1a2a3+…+1anan+1,求Tn.-数学
已知p(p≥2)是给定的某个正整数,数列{an}满足:a1=1,(k+1)ak+1=p(k-p)ak,其中k=1,2,3,…,p-1.(I)设p=4,求a2,a3,a4;(II)求a1+a2+a3+…
数列{an}的前n项和Sn=n2,数列{bn}满足b1=2,bn+1=bn+3•2an.(1)求数列{an},{bn}的通项公式;(2)若cn=2n•log2bn+1(n∈N*),Tn为{cn}的前n
已知数列{an}满足:a1=λ,an+1=23an+n-2,其中λ∈R是常数,n∈N*.(1)若λ=-3,求a2、a3;(2)对∀λ∈R,求数列{an}的前n项和Sn;(3)若λ+12>0,讨论{Sn
已知数列{an},{bn},其中a1=12,数列{an}的前n项和Sn=n2an(n≥1),数列{bn}满足b1=2,bn+1=2bn.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)是否存在自然数m
已知数列{an}满足a1=31,an+1=an+2n,n∈N+,则ann的最小值是______.-数学
数列{an}满足a1=1,an+1=an+1an3(an<3)(an≥3),则该数列的前20项和S20为()A.6B.36C.39D.42-数学
已知an=32n-11(n∈N*),记数列{an}的前n项和为Sn,则使Sn>0的n的最小值为()A.10B.11C.12D.13-数学
设数列{an}(n∈N*)的前n项的和为Sn,满足a1=1,Sn+1an+1-Snan=12n(n∈N*).(1)求证:Sn=(2-12n-1)an;(2)求数列{an}的通项公式.-数学
数列{an}的前n项和为Sn,已知Sn+an=-n(n∈N*)恒成立.(1)求数列{an}的通项公式;(2)bn=ln(an+1),求{anbn}的前n项和;(3)求证:12a1a2+122a2a3+
数列{an}满足119a1+(119)2a2+…+(119)nan=n22+n2,n∈N*.当an取得最大值时n等于()A.4B.5C.6D.7-数学
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+12an+1(n≥1,n∈Z).(1)求数列{an}的通项公式an;(2)求数列{n2an}的前n项和Tn;(3)若存在n∈N*,使
设u(n)表示正整数n的个位数,an=u(n2)-u(n),则数列{an}的前2012项和等于______.-数学
数列1,2+12,3+12+14,…,n+12+14+…+12n-1的前n项和为()A.n+1-(12)n-1B.12n2+32n+12n-1-3C.12n2+32n+12n-1-2D.n+12n-1
返回顶部
题目简介
在数列{an}中,已知a1=14,an+1an=14,bn+2=3log14an(n∈N*).(1)求数列{an}的通项公式;(2)求证:数列{bn}是等差数列;(3)设数列{cn}满足cn=an•b
题目详情
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn.
答案
∴数列{an}是首项为
∴an=(
(2)∵bn=3log
∴bn=3log
∴b1=1,公差d=3
∴数列{bn}是首项b1=1,公差d=3的等差数列.(5分)
(3)由(1)知,an=(
∴cn=(3n-2)×(
∴Sn=1×
于是
两式相减得
∴Sn=