设数列{an}是公差为d的等差数列,其前n项和为Sn.(1)已知a1=1,d=2,(ⅰ)求当n∈N*时,Sn+64n的最小值;(ⅱ)当n∈N*时,求证:2S1S3+3S2S4+…+n+1SnSn+2<

题目简介

设数列{an}是公差为d的等差数列,其前n项和为Sn.(1)已知a1=1,d=2,(ⅰ)求当n∈N*时,Sn+64n的最小值;(ⅱ)当n∈N*时,求证:2S1S3+3S2S4+…+n+1SnSn+2<

题目详情

设数列{an}是公差为d的等差数列,其前n项和为Sn
(1)已知a1=1,d=2,
(ⅰ)求当n∈N*时,
Sn+64
n
的最小值;
(ⅱ)当n∈N*时,求证:
2
S1S3
+
3
S2S4
+…+
n+1
SnSn+2
5
16

(2)是否存在实数a1,使得对任意正整数n,关于m的不等式am≥n的最小正整数解为3n-2?若存在,则求a1的取值范围;若不存在,则说明理由.
题型:解答题难度:中档来源:深圳一模

答案

(1)(ⅰ)∵a1=1,d=2,
Sn=na1+
n(n-1)d
2
=n2
Sn+64
n
=n+class="stub"64
n
≥2
n×class="stub"64
n
=16

当且仅当n=class="stub"64
n
,即n=8时,上式取等号.故
Sn+64
n
的最小值是16.(4分)
(ⅱ)证明:由(ⅰ)知Sn=n2,当n∈N*时,class="stub"n+1
SnSn+2
=class="stub"n+1
n2(n+2)2
=class="stub"1
4
[class="stub"1
n2
-class="stub"1
(n+2)2
]
,(6分)class="stub"2
S1S3
+class="stub"3
S2S4
+…+class="stub"n+1
SnSn+2
=class="stub"1
4
(class="stub"1
12
-class="stub"1
32
)+class="stub"1
4
(class="stub"1
22
-class="stub"1
42
)+…+class="stub"1
4
[class="stub"1
n2
-class="stub"1
(n+2)2
]
=class="stub"1
4
(class="stub"1
12
+class="stub"1
22
+…+class="stub"1
n2
)-class="stub"1
4
[class="stub"1
32
+class="stub"1
52
+…+class="stub"1
(n+1)2
+class="stub"1
(n+2)2
]
=class="stub"1
4
[class="stub"1
12
+class="stub"1
22
-class="stub"1
(n+1)2
-class="stub"1
(n+2)2
]
,(8分)
class="stub"1
(n+1)2
+class="stub"1
(n+2)2
>0
,∴class="stub"2
S1S3
+class="stub"3
S2S4
+…+class="stub"n+1
SnSn+2
<class="stub"1
4
(class="stub"1
12
+class="stub"1
22
)<class="stub"5
16
.(9分)
(2)假设对∀n∈N*,关于m的不等式am=a1+(m-1)d≥n的最小正整数解为cn=3n-2,
当n=1时,a1+(c1-1)d=a1≥1;(10分)
当n≥2时,恒有
a1+(cn-1)d≥n
a1+(cn-2)d<n
,即
(3d-1)n+(a1-3d)≥0
(3d-1)n+(a1-4d)<0

从而
3d-1≥0
(3d-1)×2+(a1-3d)≥0
3d-1≤0
(3d-1)×2+(a1-4d)<0
⇔d=class="stub"1
3
,1≤a1<class="stub"4
3
.(12分)
d=class="stub"1
3
,1≤a1<class="stub"4
3
时,对∀n∈N*,且n≥2时,当正整数m<cn时,
a1+class="stub"m-1
3
a1+
cn-1
3
a1+
cn-1
3
>n
.(13分)
所以存在这样的实数a1符合题意且a1的取值范围是[1,class="stub"4
3
)

更多内容推荐