设数列{an}满足a1=1,a2=2,an=13(an-1+2an-2)(n=3,4,…).数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+b

题目简介

设数列{an}满足a1=1,a2=2,an=13(an-1+2an-2)(n=3,4,…).数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+b

题目详情

设数列{an}满足a1=1,a2=2,an=
1
3
(an-1+2an-2)(n=3,4,…).数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=nanbn(n=1,2,…),求数列{cn}的前n项和Sn
题型:解答题难度:中档来源:广东

答案

(1)由an=class="stub"1
3
(an-1-an-2)
an-an-1=-class="stub"2
3
(an-1-an-2)
(n≥3)
又a2-a1=1≠0,
∴数列{an+1-an}是首项为1公比为-class="stub"2
3
的等比数列,an+1-an=(-class="stub"2
3
)n-1

an=a1+(a2-a1)+(a3-a2)+(a4-a3)++(an-an-1)
=1+1+(-class="stub"2
3
)+(-class="stub"2
3
)2++(-class="stub"2
3
)n-2

=1+
1-(-class="stub"2
3
)
n-1
1+class="stub"2
3
=class="stub"8
5
-class="stub"3
5
(-class="stub"2
3
)n-1

当n为奇数时当n为偶数时
-1≤b1+b2≤1
-1≤b2≤1
b2∈Z,b2≠0

得b2=-1,
-1≤b2+b3≤1
-1≤b3≤1
b3∈Z,b3≠0

得b3=1,
同理可得当n为偶数时,bn=-1;当n为奇数时,bn=1;
因此bn=
1,n为奇数
-1,n为偶数

(2)cn=nanbn=
class="stub"8
5
n-class="stub"3
5
n(class="stub"2
3
)
n-1
-class="stub"8
5
n-class="stub"3
5
n(class="stub"2
3
)
n-1

Sn=c1+c2+c3+c4++cn
当n为奇数时,Sn=(class="stub"8
5
-2×class="stub"8
5
+3×class="stub"8
5
-4×class="stub"8
5
++class="stub"8
5
n)-class="stub"3
5
[1×(class="stub"2
3
)
0
+2×(class="stub"2
3
)
1
+3×(class="stub"2
3
)
2
+4×(class="stub"2
3
)
3
++n(class="stub"2
3
)
n-1
]
=
4(n+1)
5
-class="stub"3
5
[1×(class="stub"2
3
)
0
+2×(class="stub"2
3
)
1
+3×(class="stub"2
3
)
2
+4×(class="stub"2
3
)
3
++n(class="stub"2
3
)
n-1
]

当n为偶数时
Sn=(class="stub"8
5
-2×class="stub"8
5
+3×class="stub"8
5
-4×class="stub"8
5
+-class="stub"8
5
n)-class="stub"3
5
[1×(class="stub"2
3
)
0
+2×(class="stub"2
3
)
1
+3×(class="stub"2
3
)
2
+4×(class="stub"2
3
)
3
++n(class="stub"2
3
)
n-1
]
=-class="stub"4n
5
-class="stub"3
5
[1×(class="stub"2
3
)
0
+2×(class="stub"2
3
)
1
+3×(class="stub"2
3
)
2
+4×(class="stub"2
3
)
3
++n(class="stub"2
3
)
n-1
]

Tn=1×(class="stub"2
3
)0+2×(class="stub"2
3
)1+3×(class="stub"2
3
)2+4×(class="stub"2
3
)3++n(class="stub"2
3
)n-1

①×class="stub"2
3
得:class="stub"2
3
Tn=1×(class="stub"2
3
)1+2×(class="stub"2
3
)2+3×(class="stub"2
3
)3+4×(class="stub"2
3
)4++n(class="stub"2
3
)n

①-②得:class="stub"1
3
Tn=1+(class="stub"2
3
)1+(class="stub"2
3
)2+(class="stub"2
3
)3+(class="stub"2
3
)4++(class="stub"2
3
)n-1-n(class="stub"2
3
)n
=
1-(class="stub"2
3
)
n
1-class="stub"2
3
-n(class="stub"2
3
)n=3-(3+n)(class="stub"2
3
)n

Tn=9-(9+3n)(class="stub"2
3
)n

当n为奇数时当n为偶数时
因此Sn=
class="stub"4n-23
5
+
9(n+3)
5
(class="stub"2
3
)
n
-class="stub"4n+27
5
+
9(n+3)
5
(class="stub"2
3
)
n

更多内容推荐