设数列{an}的前n项和为Sn,已知a1=1,an+1=3Sn+1,n∈N*.(Ⅰ)写出a2,a3的值,并求出数列{an}的通项公式;(Ⅱ)求数列{nan}的前n项和Tn.-数学

题目简介

设数列{an}的前n项和为Sn,已知a1=1,an+1=3Sn+1,n∈N*.(Ⅰ)写出a2,a3的值,并求出数列{an}的通项公式;(Ⅱ)求数列{nan}的前n项和Tn.-数学

题目详情

设数列{an}的前n项和为Sn,已知a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)写出a2,a3的值,并求出数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn
题型:解答题难度:中档来源:三门峡模拟

答案

(Ⅰ)∵a1=1,an+1=3Sn+1,
a2=4,a3=16.…(2分)
由题意,an+1=3Sn+1,
则当n≥2时,an=3Sn-1+1.
两式相减,化简得an+1=4an(n≥2).…(4分)
又因为a1=1,a2=4,,
则数列{an}是以1为首项,4为公比的等比数列,
所以an=4n-1(n∈N*)             …(6分)
(Ⅱ)Tn=a1+2a2+3a3+…+nan=1+2×4+3×42+…+n•4n-1
4Tn=4×1+2×42+3×43+…+(n-1)•4n-1+n•4n,…(8分)
两式相减得,-3Tn=1+4+42+…+4n-1-n•4n=
1-4n
1-4
-n•4n
.…(12分)
化简整理得,Tn=4n(class="stub"n
3
-class="stub"1
9
)+class="stub"1
9
(n∈N*).…(13分)

更多内容推荐