若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),设Sn=g(1)+g(2)+g(3)+…g(2n)(Ⅰ)求S1、S2、S3;(Ⅱ)

题目简介

若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),设Sn=g(1)+g(2)+g(3)+…g(2n)(Ⅰ)求S1、S2、S3;(Ⅱ)

题目详情

若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),设Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3
(Ⅱ)求Sn
(III)设bn=
1
Sn-1
,求证数列{bn}的前n顶和Tn
3
2
题型:解答题难度:中档来源:不详

答案

(Ⅰ)S1=g(1)+g(2)=1+1=2(1分)
S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6(2分)
S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)
=1+1+3+1+5+3+7+1=22…(3分)
(Ⅱ)∵g(2m)=g(m),n∈N+…(4分)
Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)]…(5分)
=
(1+2n-1)•2n-1
2
+[g(1)+g(2)+…g(2n-1)]
…(6分)
=4n-1+Sn-1…(7分)
Sn-Sn-1=4n-1
∴Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1…(8分)
=4n-1+4n-2+…+42+4+2
=
4(4n-1-1)
4-1
+2=class="stub"1
3
4n+class="stub"2
3
…(9分)
(Ⅲ)bn=class="stub"1
Sn-1
=class="stub"3
4n-1
=class="stub"3
(2n)2-1
=class="stub"3
(2n-1)(2n+1)
=class="stub"3
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)
,…(10分)Tn=class="stub"3
2
(class="stub"1
21-1
-class="stub"1
2+1
)+class="stub"3
2
(class="stub"1
22-1
-class="stub"1
22+1
)+class="stub"3
2
(class="stub"1
23-1
-class="stub"1
23+1
)+…+class="stub"3
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)

=class="stub"3
2
[1-class="stub"1
2+1
+class="stub"1
22-1
-class="stub"1
22+1
+class="stub"1
23-1
+…+class="stub"1
2n-1-1
-class="stub"1
2n-1+1
+class="stub"1
2n-1
-class="stub"1
2n+1
]

=class="stub"3
2
[1-(class="stub"1
3
-class="stub"1
3
)-(class="stub"1
22+1
-class="stub"1
23-1
)-…-(class="stub"1
2n-1+1
-class="stub"1
2n-1
)-class="stub"1
2n+1
]
…(11分)
∴当n=1时,T1=b1=1<class="stub"3
2
成立  …(12分)
当n≥2时,class="stub"1
2n-1+1
-class="stub"1
2n-1
=
2n-1-2n-1-1
(2n-1+1)(2n-1)
=
2n-1-2
(2n-1+1)(2n-1)
≥0
…(13分)
Tn=class="stub"3
2
[1-(class="stub"1
2+1
-class="stub"1
22-1
)-(class="stub"1
22+1
-class="stub"1
23-1
)-…(class="stub"1
2n-1+1
-class="stub"1
2n-1
)-class="stub"1
2n+1
<class="stub"3
2
•1=class="stub"3
2

Tn<class="stub"3
2
.…(14分)

更多内容推荐