已知数列{an}满足a1=1,a2=12,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*.(1)求a3,a4,a5,a6的值及数列{an}的通项公式;(2)设bn=a2n-1

题目简介

已知数列{an}满足a1=1,a2=12,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*.(1)求a3,a4,a5,a6的值及数列{an}的通项公式;(2)设bn=a2n-1

题目详情

已知数列{an}满足a1=1,a2=
1
2
,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*.
(1)求a3,a4,a5,a6的值及数列{an}的通项公式;
(2)设bn=a2n-1•a2n(n∈N*),求数列{bn}的前n项和Sn
题型:解答题难度:中档来源:惠州一模

答案

(1)a3=3,a4=class="stub"1
4
a5=5,a6=class="stub"1
8

当n为奇数时,an+2=an+2
所以a2n-1=2n-1(3分)
当n为偶数时,an+2=class="stub"1
2
an
a2n=a2•(class="stub"1
2
) n-1=(class="stub"1
2
)n
(5分)
因此,数列an的通项公式为an=
n,n=2k-1
(class="stub"1
2
)class="stub"n
2
,n=2k
(6分)
(2)因为bn=(2n-1)•(class="stub"1
2
)n
Sn=1•class="stub"1
2
+3•(class="stub"1
2
)2+5•(class="stub"1
2
)3++(2n-3)•(class="stub"1
2
)n-1+(2n-1)•(class="stub"1
2
)n
class="stub"1
2
Sn=1•(class="stub"1
2
)2+3•(class="stub"1
2
)3+5•(class="stub"1
2
)4++(2n-3)•(class="stub"1
2
)n+(2n-1)•(class="stub"1
2
)n+1

两式相减得class="stub"1
2
Sn=1•class="stub"1
2
+2[(class="stub"1
2
)2++(class="stub"1
2
)n]-(2n-1)•(class="stub"1
2
)n-1
(8分)
=class="stub"1
2
+
2[1-(class="stub"1
2
)
n+1
]
1-class="stub"1
2
-(2n-1)•(class="stub"1
2
)n+1
=class="stub"3
2
-(2n+3)(class="stub"1
2
)n+1

Sn=3-(2n+3)•(class="stub"1
2
)n
(12分)

更多内容推荐