设f(n)=n2,(n为奇数)-n2,(n为偶数)(n∈N+),若an=f(n)+f(n+1),则a1+a2+…+ak=______(k∈N+)-数学

题目简介

设f(n)=n2,(n为奇数)-n2,(n为偶数)(n∈N+),若an=f(n)+f(n+1),则a1+a2+…+ak=______(k∈N+)-数学

题目详情

设f(n)=
n2,(n为奇数)
-n2,(n为偶数)
(n∈N+),若an=f(n)+f(n+1),则a1+a2+…+ak=______(k∈N+
题型:解答题难度:中档来源:杭州一模

答案

∵an=f(n)+f(n+1),
∴由已知条件知,an=
n2-(n+1)2=-(2n+1)  , n是奇数
-n2+(n+1)2= 2n+1   , n是偶数

an=(-1)n•(2n+1),∴an+an+1=2(n是奇数).
当k为奇数时,a1+a2+…+ak=(a1+a2)+(a3+a4)+…+(ak-2+ak-1)+ak=2×class="stub"k-1
2
+(-2k-1)=-k-2.
当k为偶数时,a1+a2+…+ak=(a1+a2)+(a3+a4)+…+(ak-1+ak)=2×class="stub"k
2
=k.
综上可得 a1+a2+…+ak=
k,(k为偶数)
-k-2,(k为奇数)

故答案为
k,(k为偶数)
-k-2,(k为奇数)

更多内容推荐