设数列{an}的前n项和Sn满足:Sn+an=n-1n(n+1),n=1,2,…,则通项an=______.-数学

题目简介

设数列{an}的前n项和Sn满足:Sn+an=n-1n(n+1),n=1,2,…,则通项an=______.-数学

题目详情

设数列{an}的前n项和Sn满足:Sn+an=
n-1
n(n+1)
,n=1,2,…,则通项an=______.
题型:填空题难度:中档来源:不详

答案

Sn+an=class="stub"n-1
n(n+1)

Sn=class="stub"n-1
n(n+1)
-an
Sn+1=class="stub"n
(n+2)(n+1)
-an+1

an+1=Sn+1-Sn=class="stub"n
(n+1)(n+2)
-an+1-class="stub"n-1
n(n+1)
+an

即  2an+1=class="stub"n
(n+1)(n+2)
-class="stub"n-1
n(n+1)
+an
=class="stub"-n+2
n(n+1)(n+2)
+an
=
class="stub"n+2-2n
n(n+1)(n+2)
+an=class="stub"-2
(n+1)(n+2)
+an+class="stub"1
n(n+1)

由此得 2(an+1+class="stub"1
(n+1)(n+2)
)=an+class="stub"1
n(n+1)

bn=an+class="stub"1
n(n+1)
b1=a1+class="stub"1
2
=class="stub"1
2
(把n=1代入题意中的式子易求得a1=0),
bn+1=class="stub"1
2
bn
,故bn=class="stub"1
2n
,所以an=class="stub"1
2n
-class="stub"1
n(n+1)

故答案为:class="stub"1
2n
-class="stub"1
n(n+1)

更多内容推荐