已知首项为1的数列{an}满足:对任意正整数n,都有:a1•2a1-1+a2•2a2-1+a3•2a3-1+…+an•2an-1=(n2-2n+3)•2n+c,其中c是常数.(Ⅰ)求实数c的值;(Ⅱ)

题目简介

已知首项为1的数列{an}满足:对任意正整数n,都有:a1•2a1-1+a2•2a2-1+a3•2a3-1+…+an•2an-1=(n2-2n+3)•2n+c,其中c是常数.(Ⅰ)求实数c的值;(Ⅱ)

题目详情

已知首项为1的数列{an}满足:对任意正整数n,都有:a12
a1
-1
+a22
a2
-1
+a32
a3
-1
+…+an2
an
-1
=(n2-2n+3)•2n+c
,其中c是常数.
(Ⅰ)求实数c的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设数列{
an
(-
1
2
)
an
-1
}
的前n项和为Sn,求证:S2n-1>S2m,其中m,n∈N*
题型:解答题难度:中档来源:深圳二模

答案

(Ⅰ)当a=1时,1×20=2×2+c,
解得c=-3.
(Ⅱ)∵a12
a1
-1
+a22
a2
-1
+a32
a3
-1
+…+an2
an
-1
=(n2-2n+3)•2n+c
,①
a12
a1
-1
+a22
a2
-1
+a32
a3
-1
+…+an-12
an-1
-1
=[(n-1)2-2(n-1)+3]•2n-1+c,②
①-②,并整理,得an2
a n
-1
=n22n-1

∴an=n2.
(Ⅲ)∵an=n2,
∴数列{
an
(-class="stub"1
2
)
an
-1
}
={n•(-class="stub"1
2
)
n-1
}.
∴S2n-1=1+2(-class="stub"1
2
)
 
+3(-class="stub"1
2
)
2
+…+(2n-1)•(-class="stub"1
2
)
2n-2

-class="stub"1
2
S2n-1=1(-class="stub"1
2
)
 
+2(-class="stub"1
2
)
2
+…+(2n-2)•(-class="stub"1
2
)
2n-2
+(2n-1)•(-class="stub"1
2
)
2n-1

class="stub"3
2
S2n-1=1+(-class="stub"1
2
)
 
+(-class="stub"1
2
)
2
+…+(-class="stub"1
2
)
2n-2
-(2n-1)•(-class="stub"1
2
)
2n-1

=
1×[1-(-class="stub"1
2
)
2n-1
]
1-(-class="stub"1
2
)
=class="stub"2
3
[1-(-class="stub"1
2
)
2n-1
]

S2n-1=class="stub"4
9
[1-(-class="stub"1
2
)
2n-1
]
>class="stub"4
9

同理,S2m=class="stub"4
9
[1-(-class="stub"1
2
)
2m
]
<class="stub"4
9

∴S2n-1>S2m,其中m,n∈N*.

更多内容推荐