数列{an}中a1=12,前n项和Sn满足Sn+1-Sn=(12)n+1(n∈N*).(I)求数列{an}的通项公式an以及前n项和Sn;(Ⅱ)记bn=n+12an(n∈N*)求数列{bn}的前n项和

题目简介

数列{an}中a1=12,前n项和Sn满足Sn+1-Sn=(12)n+1(n∈N*).(I)求数列{an}的通项公式an以及前n项和Sn;(Ⅱ)记bn=n+12an(n∈N*)求数列{bn}的前n项和

题目详情

数列{an} 中a1=
1
2
,前n项和Sn满足Sn+1-Sn=(
1
2
)n+1
(n∈N*).
( I ) 求数列{an}的通项公式an以及前n项和Sn
(Ⅱ)记  bn=
n+1
2an
(n∈N*)求数列{bn} 的前n项和Tn
(Ⅲ)试确定Tn
5n
4n+2
(n∈N*)的大小并证明.
题型:解答题难度:中档来源:不详

答案

(I)s n+1-sn=(class="stub"1
2
)n+1
an+1=(class="stub"1
2
)n+1
(n∈N*)(1分)
又a1=class="stub"1
2
,故an=(class="stub"1
2
)n
(n∈N*)(2分)
从而sn=
class="stub"1
2
[1-(class="stub"1
2
)
n
]
1-class="stub"1
2
=1-(class="stub"1
2
)n
(4分)
(Ⅱ)由(I)bn=class="stub"n+1
2an
=class="stub"n+1
2n
=class="stub"n+1
2n+1
Tn=class="stub"2
22
+class="stub"3
23
+class="stub"4
24
++class="stub"n+1
2n+1
,(5分)class="stub"1
2
Tn=    class="stub"2
23
+class="stub"3
24
+class="stub"4
25
++class="stub"n
2n+1
+class="stub"n+1
2n+2
(6分)
两式相减,得class="stub"1
2
Tn=    class="stub"2
22
+class="stub"1
23
+class="stub"1
24
+class="stub"1
25
++class="stub"1
2n+1
-class="stub"n+1
2n+2
(7分)
=class="stub"1
2
+
class="stub"1
23
×(1-class="stub"1
2n-1
)
1-class="stub"1
2
-class="stub"n+1
2n+2
=class="stub"3
4
-class="stub"1
2n+1
-class="stub"n+1
2n+2
(8分)
所以Tn=class="stub"3
2
-class="stub"1
2n
-class="stub"n+1
2n+1
=class="stub"3
2
-class="stub"n+3
2n+1
(9分),
(Ⅲ)Tn-class="stub"5n
4n+2
=class="stub"3
2
-class="stub"n+3
2n+1
-class="stub"5n
4n+2
=
(n+3)(2n-2n-1)
2n+1(2n+1)

于是确定Tn与class="stub"5n
4n+2
的大小关系等价于比较2n与2n+1的大小(10分)
n=1时2<2+1,n=2时22<2×2+1,n=3时23>2×3+1(11分)
令g(x)=2x-2x-1,g′(x)=2xln2-2,x>2时g(x)为增函数,(12分)
所以n≥3时g(n)≥g(3)=1>0,2n≥2n+1,(13分)
综上所述n=1,2时Tn<class="stub"5n
4n+2
n=3时Tn>class="stub"5n
4n+2
(14分)

更多内容推荐