在数列{an}中,a1=1,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0.(Ⅰ)求a2;(Ⅱ)求an;(Ⅲ)若bn=(n+1)2(n∈N),Tn=(-1)a1b1+(-1)a2b2+…

题目简介

在数列{an}中,a1=1,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0.(Ⅰ)求a2;(Ⅱ)求an;(Ⅲ)若bn=(n+1)2(n∈N),Tn=(-1)a1b1+(-1)a2b2+…

题目详情

在数列{an}中,a1=1,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0.
(Ⅰ)求a2
(Ⅱ)求an
(Ⅲ)若bn=(n+1)2(n∈N),Tn=(-1)a1b1+(-1)a2b2+…+(-1)anbn,n∈N,求Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)S1=4,∴a2=3.
  (Ⅱ)∵nSn+1=(n+3)Sn…①∴当n≥2时,有(n-1)Sn=(n+2)Sn-1…②
①-②有nan+1=(n+2)an(n≥2),
∴2a3=4a2,3a4=5a3,…(n-1)an=(n+1)an+1(n≥3)
将以上各式左右两端分别相乘,得(n-1)an=
(n+1)!
6
a2,,∴an=
n(n+1)
2
,n≥3,
当n=1,2时也成立,∴an=
n(n+1)
2
(n∈N+).
   (Ⅲ)∵bn=(n+1)2(n∈N),∴Tn=(-1)a1b1+(-1)a2b2+…+(-1)anbn=-22-32+…+(-1)
n(n+1)
2
(n+1)2,
当n=4k,k∈N+时,Tn=-22-32+42+52+…-(4k-2)2-(4k-1)2+(4k)2+(4k+1)2
∵-(4k-2)2-(4k-1)2+(4k)2+(4k+1)2=32k-4
∴Tn=32(1+2+3+…+k)-4k=(4k)2+12k=n2+3n
当,k∈N+时,Tn=(4k)2+3×4k-(4k+1)2=4k-1=n
当,k∈N+时,Tn=(4k)2+3×4k-(4k+1)2-(4k)2=4k-1-(4k)2=-n2-3n-3

当n=4k-3,k∈N+时,,Tn=(4k)2+3×4k-(4k+1)2+(4k-1)2=-4k=-n-3
∴Tn=
-n-3             n=4k-3
-n2-3n-3       n=4k-2
n                   n=4k-1
n2+3n           n=4k

更多内容推荐