数列{an}前n项和为Sn,且Sn=an2+bn+c(a,b,c∈R),已知a1=-28,S2=-52,S5=-100.(1)求数列{an}的通项公式.(2)求使得Sn最小的序号n的值.-数学

题目简介

数列{an}前n项和为Sn,且Sn=an2+bn+c(a,b,c∈R),已知a1=-28,S2=-52,S5=-100.(1)求数列{an}的通项公式.(2)求使得Sn最小的序号n的值.-数学

题目详情

数列{an}前n项和为Sn,且Sn=an2+bn+c(a,b,c∈R),已知a1=-28,S2=-52,S5=-100.
(1)求数列{an}的通项公式.
(2)求使得Sn最小的序号n的值.
题型:解答题难度:中档来源:不详

答案

(1)有题意可得
a+b+c=-28
4a+2b+c=-52
25a+5b+c=100
解得
a=2
b=-30
c=0
∴Sn=2n2-30n
因为当n≥2时,an=Sn-Sn-1=4n-32
当n=1时,a1=-28,也适合上式.
∴an=4n-32
(2)因为Sn=2n2-30n=2(n-class="stub"15
2
)2-class="stub"225
2

因为n是正整数,所以当n=7或8,Sn最小,最小值是-112.

更多内容推荐