数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有2Sn=a2n+an.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设正数数列{cn}满足an+1=(cn)n+1,(n∈N*),求数列{c

题目简介

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有2Sn=a2n+an.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设正数数列{cn}满足an+1=(cn)n+1,(n∈N*),求数列{c

题目详情

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有2Sn=
a2n
+an

(Ⅰ)求数列{an}的通项公式;
(Ⅱ) 设正数数列{cn}满足an+1=(cn)n+1,(n∈N*),求数列{cn}中的最大项;
(Ⅲ) 求证:Tn=
1
a41
+
1
a42
+
1
a43
+…+
1
a4n
11
10
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由已知:对于n∈N*,总有2Sn=an+an2①成立
2Sn-1=an-1+
a2n-1
(n≥2)

①-②得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1)∵an,an-1均为正数,∴an-an-1=1(n≥2),
∴数列{an}是公差为1的等差数列,又n=1时,2S1=a1+a12,解得a1=1.
∴an=n.
(Ⅱ)解法一:由已知cn>0,a2=c12=2⇒c1=
2

a3=
c32
=3
c2=
33
,同理,c4=
2
c5=
55

易得 c1<c2,c2>c3>c4>…猜想n≥2时,{cn}是递减数列.
f(x)=class="stub"lnx
x
,则f′(x)=
class="stub"1
x
•x-lnx
x2
=class="stub"1-lnx
x2

∵当x≥3时,lnx>1,则1-lnx<0,即f'(x)<0.
∴在[3,+∞)内f(x)为单调递减函数.
an+1=cnn+1知lncn=
ln(n+1)
n+1

∴n≥2时,{lncn}是递减数列.即{cn}是递减数列.
又c1<c2,∴数列{cn}中的最大项为c2=
33

解法二:猜测数列{cn}中的最大项为c2=
33
.c1<c2>c3易直接验证;
以下用数学归纳法证明n≥3时,nn+1>(n+1)n
(1)当n=3时,nn+1=81>64=(n+1)n,所以n=3时不等式成立;
(2)假设n=k(k≥3)时不等式成立,即kk+1>(k+1)k,即(class="stub"k+1
k
)k<k

当n=k+1时,(class="stub"k+2
k+1
)k+1=(class="stub"k+2
k+1
)(class="stub"k+2
k+1
)k<(class="stub"k+2
k+1
)(class="stub"k+1
k
)k<(class="stub"k+2
k+1
)k<k+1

所以(k+1)k+2>(k+2)k+1,即n=k+1时不等式成立.
由(1)(2)知nn+1>(n+1)n对一切不小于3的正整数都成立.
(3)解法一:当n≥4时,由基本不等式的性质可得n3+16≥2
16n3
=8n
n
≥16n

n=2
32
时,取前一个等号,显然取不到,因此:n3+16>16n,∴n4>16n(n-1).
Tn<1+class="stub"1
16
+class="stub"1
81
+class="stub"1
16
[class="stub"1
3•4
+class="stub"1
4•5
+…+class="stub"1
n(n-1)
]
=1+class="stub"1
16
+class="stub"1
81
+class="stub"1
16
(class="stub"1
3
-class="stub"1
n
)<class="stub"11
10

解法二:n≥2时,class="stub"1
n4
<class="stub"1
n2(n-1)2
=class="stub"1
2n-1
[class="stub"1
(n-1)2
-class="stub"1
n2
]

Tn<1+class="stub"1
16
+class="stub"1
81
+class="stub"1
7
(class="stub"1
32
-class="stub"1
42
)+class="stub"1
9
(class="stub"1
42
-class="stub"1
52
)+…+class="stub"1
2n-1
[class="stub"1
(n-1)2
-class="stub"1
n2
]
<1+class="stub"1
16
+class="stub"1
81
+class="stub"1
7
[(class="stub"1
32
-class="stub"1
42
)+(class="stub"1
42
-class="stub"1
52
)+…class="stub"1
(n-1)2
-class="stub"1
n2
]
<1+class="stub"1
16
+class="stub"1
81
+class="stub"1
63
<class="stub"11
10

更多内容推荐