数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).(Ⅰ)求a1,a2,a4,a5;(Ⅱ)求数列{an}的前n项和Sn;(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3

题目简介

数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).(Ⅰ)求a1,a2,a4,a5;(Ⅱ)求数列{an}的前n项和Sn;(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3

题目详情

数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).
(Ⅰ)求a1,a2,a4,a5
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=n(n+1)(n+2)Sn,试求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)当n=1时,有a1=a2;当n=2时,有a1+a2=a3;…
∵a3=1,
∴a1=class="stub"1
2
,a2=class="stub"1
2
,a4=2,a5=4.…(4分)
(Ⅱ)∵Sn=an+1=Sn+1-Sn,…(6分)
∴2Sn=Sn+1
Sn+1
Sn
=2…(8分)
∴{Sn}是首项为S1=a1=class="stub"1
2
,公比为2的等比数列.
∴Sn=class="stub"1
2
•2n-1=2n-2…(10分)
(Ⅲ)由Sn=2n-2,得bn=n-2,
∴bn+3=n+1,bn+4=n+2,
∵cn•bn+3•bn+4=n(n+1)(n+2)Sn,
∴cn•(n+1)(n+2)=n(n+1)(n+2)2n-2,
即cn=n•2n-2.  …(12分)
Tn=1×2-1+2×20+3×21+4×22+…+n•2n-2…①
则2Tn=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1…②
②一①得
Tn=n•2n-1-2-1-20-21-…-2n-2=n•2n-1-
2-1(1-2n)
1-2
=n•2n-1+class="stub"1
2
.…(14分)

更多内容推荐