已知函数f(n)=-n2,n=2k(k∈z)n2,n=2k-1(k∈z),an=f(n)+f(n+1),则a1+a2+…+a100=()A.0B.-100C.100D.10200-数学

题目简介

已知函数f(n)=-n2,n=2k(k∈z)n2,n=2k-1(k∈z),an=f(n)+f(n+1),则a1+a2+…+a100=()A.0B.-100C.100D.10200-数学

题目详情

已知函数f(n)=
-n2,n=2k(k∈z)
n2,n=2k-1(k∈z)
,an=f(n)+f(n+1),则a1+a2+…+a100=(  )
A.0B.-100C.100D.10200
题型:单选题难度:中档来源:不详

答案

由题意可知a1=f(1)+f(2)=1-22=-3;
a2=f(2)+f(3)=-22+32=5;
a3=f(3)+f(4)=32-42=-7,
由上可猜想:
当n为奇数时,an=n2-(n+1)2=-2n-1,
当n为偶数时an=-n2+(n+1)2=2n+1,
故所有的奇数项组成一个首项为-3,公差为-2,项数为50的等差数列;
所有的偶数项组成一个首项为5,公差为2,项数为50的等差数列.
由等差数列的前n项和公式Sn=(a1-class="stub"d
2
)×n+class="stub"d
2
n2
得S奇=(-3+1)×50-502=-2600;
S偶=(5-1)×50+502=2700
所以S100=S偶+S奇=2700-2600=100
故选C.

更多内容推荐