已知数列log2(an-1)(n∈N*)为等差数列,且a1=3,a2=5,则1a2-a1+1a3-a2+…+1an+1-an=______.-数学

题目简介

已知数列log2(an-1)(n∈N*)为等差数列,且a1=3,a2=5,则1a2-a1+1a3-a2+…+1an+1-an=______.-数学

题目详情

已知数列log2(an-1)(n∈N*)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=______.
题型:填空题难度:中档来源:抚州模拟

答案

设等差数列的公差为d,则d=log2(a2-1)-log2(a1-1)=1
∴log2(an-1)=log22+(n-1)×1=n
∴an=2n+1
则an+1-an=2n+1-2n=2n
class="stub"1
a2-a1
+class="stub"1
a3-a2
+…+class="stub"1
an+1-an
=class="stub"1
2
+class="stub"1
22
+…+class="stub"1
2n
=
class="stub"1
2
[1-(class="stub"1
2
)]
n
1-class="stub"1
2
=1-class="stub"1
2n

故答案为:1-class="stub"1
2n

更多内容推荐