在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则a1+a2+a3+…+a51=______.-数学

题目简介

在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则a1+a2+a3+…+a51=______.-数学

题目详情

在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则a1+a2+a3+…+a51=______.
题型:填空题难度:偏易来源:不详

答案

∵数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),
∴a3-a1=0,
a5-a3=0,

a51-a49=0,
∴a1=a3=a5=…=a51=1;
由a4-a2=2,得a4=2+a2=4,同理可得a6=6,a8=8,…,a50=50;
∴a1+a2+a3+…+a51
=(a1+a3+a5+…+a51)+(a2+a4+…+a50)
=26+
(2+50)×25
2

=676.
故答案为:676.

更多内容推荐