已知p(p≥2)是给定的某个正整数,数列{an}满足:a1=1,(k+1)ak+1=p(k-p)ak,其中k=1,2,3,…,p-1.(I)设p=4,求a2,a3,a4;(II)求a1+a2+a3+…

题目简介

已知p(p≥2)是给定的某个正整数,数列{an}满足:a1=1,(k+1)ak+1=p(k-p)ak,其中k=1,2,3,…,p-1.(I)设p=4,求a2,a3,a4;(II)求a1+a2+a3+…

题目详情

已知p(p≥2)是给定的某个正整数,数列{an}满足:a1=1,(k+1)ak+1=p(k-p)ak,其中k=1,2,3,…,p-1.
(I)设p=4,求a2,a3,a4
(II)求a1+a2+a3+…+ap
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由(k+1)ak+1=p(k-p)ak得
ak+1
ak
=p×class="stub"k-p
k+1
,k=1,2,3,…,p-1
a2
a1
=-4×class="stub"4-1
2
=-6
,a2=-6a1=-6;
a3
a2
=-4×class="stub"4-2
3
=-class="stub"8
3
,a3=16,
a4
a3
=-4×class="stub"4-3
4
=-1
,a4=-16; (3分)
(Ⅱ)由(k+1)ak+1=p(k-p)ak
得:
ak+1
ak
=p×class="stub"k-p
k+1
,k=1,2,3,…,p-1
a2
a1
=-p×class="stub"p-1
2
a3
a2
=-p×class="stub"p-2
3
,…,
ak
ak-1
=-p×
p-(k-1)
k

以上各式相乘得
ak
a1
=(-p)k-1×
(p-1)(p-2)(p-3)…(p-k+1)
k!
 (5分)
ak=(-p)k-1×
(p-1)(p-2)(p-3)…(p-k+1)
k!

=(-p)k-1×
(p-1)!
k!(p-k)!
=
(-p)k-1
p
×class="stub"p!
k!(p-k)!

=-(-p)k-2×
Ckp
=-class="stub"1
p2
Ckp
(-p)k
,k=1,2,3,…,p (7分)
∴a1+a2+a3+…+ap=-class="stub"1
p2
[
C1p
(-p)1+
C2p
(-p)2+
C3p
(-p)3+…+
Cpp
(-p)p]
=-class="stub"1
p2
[(1-p)p-1]
 (10分)

更多内容推荐