已知数列{an}满足a1=1,an+an+1=(13)n(n∈N*),Sn=a1+3•a2+32•a3+…+3n-1•an,则4Sn-3nan=______.-数学

题目简介

已知数列{an}满足a1=1,an+an+1=(13)n(n∈N*),Sn=a1+3•a2+32•a3+…+3n-1•an,则4Sn-3nan=______.-数学

题目详情

已知数列{an}满足a1=1,an+an+1=(
1
3
)
n
(n∈N*)
,Sn=a1+3•a2+32•a3+…+3n-1•an,则4Sn-3nan=______.
题型:填空题难度:中档来源:不详

答案

由Sn=a1+3•a2+32•a3+…+3n-1•an,
所以3Sn=3a1+32•a2+33•a3+…+3n•an,
相加4Sn=a1+3(a1+a2)+…+3n-1•(an-1+an)+3n•an,
所以4Sn-3nan=1+3(class="stub"1
3
)
1
+32(class="stub"1
3
)
2
+…+3n-1•(class="stub"1
3
)
n-1
=n.
故答案为n.

更多内容推荐