设数列{an}的前n项和Sn=(-1)n(2n2+4n+1)-1,n∈N*.(1)求数列{an}的通项公式an;(2)记bn=(-1)nan,求数列{bn}前n项和Tn.-数学

题目简介

设数列{an}的前n项和Sn=(-1)n(2n2+4n+1)-1,n∈N*.(1)求数列{an}的通项公式an;(2)记bn=(-1)nan,求数列{bn}前n项和Tn.-数学

题目详情

设数列{an}的前n项和Sn=(-1)n(2n2+4n+1)-1,n∈N*
(1)求数列{an}的通项公式an
(2)记bn=
(-1)n
an
,求数列{bn}前n项和Tn
题型:解答题难度:中档来源:武汉模拟

答案

(1)数列{an}的前n项之和Sn=(-1)n(2n2+4n+1)-1,在n=1时,a1=s1=(-1)1(2+4+1)-1=-8
在n≥2时,an=sn-sn-1=(-1)n(2n2+4n+1)-(-1)n-1[2(n-1)2+4(n-1)+1]=(-1)n•4n(n+1),
而n=1时,a1=-8满足an=(-1)n4n(n+1),故所求数列{an}通项an=(-1)n4n(n+1).
(2)∵bn=
(-1)n
an
=class="stub"1
4n(n+1)
=class="stub"1
4
class="stub"1
n
-class="stub"1
n+1
),
因此数列{bn}的前n项和Tn=class="stub"1
4
(1-class="stub"1
n+1
)=class="stub"4n
n+1

更多内容推荐