已知函数y=x2-x+nx2+1(n∈N*,y≠1)的最小值为an,最大值为bn,且cn=4(anbn-12).数列{cn}的前n项和为Sn.(1)请用判别式法求a1和b1;(2)求数列{cn}的通项

题目简介

已知函数y=x2-x+nx2+1(n∈N*,y≠1)的最小值为an,最大值为bn,且cn=4(anbn-12).数列{cn}的前n项和为Sn.(1)请用判别式法求a1和b1;(2)求数列{cn}的通项

题目详情

已知函数y=
x2-x+n
x2+1
(n∈N*,y≠1)的最小值为an,最大值为bn,且cn=4(anbn-
1
2
).数列{cn}的前n项和为Sn
(1)请用判别式法求a1和b1
(2)求数列{cn}的通项公式cn
(3)若{dn}为等差数列,且dn=
Sn
n+c
(c为非零常数),设f(n)=
dn
(n+36)dn+1
(n∈N*),求f(n)的最大值.
题型:解答题难度:中档来源:不详

答案

(1)n=1时,y=
x2-x+1
x2+1
,则(y-1)x2+x+y-1=0
∵x∈R,y≠1,
∴△=1-4(y-1)(y-1)≥0,即4y2-8y+3≤0
class="stub"1
2
≤y≤class="stub"3
2

∴a1=class="stub"1
2
,b1=class="stub"3
2

(2)由y=
x2-x+n
x2+1
,可得(y-1)x2+x+y-n=0
∵x∈R,y≠1,
∴△=1-4(y-1)(y-n)≥0,即4y2-4(1+n)y+4n-1≤0
由题意知:an,bn是方程4y2-4(1+n)y+4n-1=0的两根,
∴an•bn=class="stub"4n-1
4

∴cn=4(anbn-class="stub"1
2
)=4n-3;
(3)∵cn=4n-3,∴Sn=2n2-n,∴dn=
Sn
n+c
=
2n2-n
n+c

∵{dn}为等差数列,∴2d2=d1+d3,
∴2c2+c=0,∴c=0(舍去)或c=-class="stub"1
2
,∴dn=
2n2-n
n-class="stub"1
2
=2n
∴f(n)=
dn
(n+36)dn+1
=class="stub"n
n2+37n+36
=class="stub"1
n+class="stub"36
n
+37
class="stub"1
2
36
+37
=class="stub"1
49

当且仅当n=class="stub"36
n
,即n=6时,取等号,∴f(n)的最大值为class="stub"1
49

更多内容推荐