设向量.a=(4cosα,sinα),.b=(sinβ,4cosβ),.c=(cosβ,-4sinβ).(1)若.a与.b-2.c垂直,求tan(α+β)的值;(2)求|.b+.c|的最大值;(3)若

题目简介

设向量.a=(4cosα,sinα),.b=(sinβ,4cosβ),.c=(cosβ,-4sinβ).(1)若.a与.b-2.c垂直,求tan(α+β)的值;(2)求|.b+.c|的最大值;(3)若

题目详情

设向量
.
a
=(4cosα,sinα),
.
b
=(sinβ,4cosβ),
.
c
=(cosβ,-4sinβ).
(1)若
.
a
.
b
-2
.
c
垂直,求tan(α+β)的值;
(2)求|
.
b
+
.
c
|的最大值;
(3)若
.
a
.
b
,求
cos(α+β)
cos(α-β)
的值.
题型:解答题难度:中档来源:不详

答案

(1)∵
.
a
=(4cosα,sinα),
.
b
=(sinβ,4cosβ),
.
c
=(cosβ,-4sinβ).
a
b
=4cosαsinβ+4sinαcosβ=4sin(α+β)
a
c
=4cos(α+β)

a
•(
b
-2
c
)=0

a
b
=2
a
c

∴4sin(α+β)=8cos(α+β),
即tan(α+β)=2
(2)∵|
b
+
c
|=
(sinβ+cosβ)2+(4cosβ-4sinβ)2
=
17-15sin2β
≤4
2

|
b
+
c
|
的最大值为4
2

(3)∵
a
b
∴16cosαcosβ-sinαsinβ=0,tanαtanβ=16

cos(α+β)
cos(α-β)
=class="stub"1-tanαtanβ
1+tanαtanβ
=-class="stub"15
17

更多内容推荐