已知函数f(x)=sin(2x-π6)+2cos2x-1(x∈R).(I)求f(x)的单调递增区间;(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且AB•A

题目简介

已知函数f(x)=sin(2x-π6)+2cos2x-1(x∈R).(I)求f(x)的单调递增区间;(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且AB•A

题目详情

已知函数f(x)=sin(2x-
π
6
)+2cos2x-1(x∈R)

(I)求f(x)的单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且
AB
AC
=9
,求a的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)f(x)=sin(2x-class="stub"π
6
)+2cos2x-1=
3
2
sin2x-class="stub"1
2
cos2x+cos2x

=
3
2
sin2x+class="stub"1
2
cos2x
=sin(2x+class="stub"π
6
)

由-class="stub"π
2
+2kπ≤2x+class="stub"π
6
class="stub"π
2
+2kπ(k∈Z)得,-class="stub"π
3
+kπ≤x≤class="stub"π
6
+kπ(k∈Z)
故f(x)的单调递增区间是[-class="stub"π
3
+kπ,class="stub"π
6
+kπ](k∈Z)
(II)在△ABC中,由f(A)=class="stub"1
2
,可得sin(2A+class="stub"π
6
)=class="stub"1
2

∴2A+class="stub"π
6
=class="stub"π
6
class="stub"5
6
π,解得A=class="stub"π
3
,(A=0舍去),
∴A=class="stub"π
3

AB
AC
=9

得bccosA=9,class="stub"1
2
bc=9,bc=18

由余弦定理得,a2=b2+c2-2bccosA=(b+c)2-3bc,
于是a2=4a2-54,a2=18,a=3
2

更多内容推荐