已知向量m=(3cosx4,cosx4),n=(sinx4,cosx4).(Ⅰ)若m•n=3+12,求cos(x+π3)的值;(Ⅱ)记f(x)=m•n-12,在△ABC中,角A,B,C的对边分别是a,

题目简介

已知向量m=(3cosx4,cosx4),n=(sinx4,cosx4).(Ⅰ)若m•n=3+12,求cos(x+π3)的值;(Ⅱ)记f(x)=m•n-12,在△ABC中,角A,B,C的对边分别是a,

题目详情

已知向量
m
=(
3
cos
x
4
,cos
x
4
)
n
=(sin
x
4
,cos
x
4
)

(Ⅰ)若
m
n
=
3
+1
2
,求cos(x+
π
3
)
的值;
(Ⅱ)记f(x)=
m
n
-
1
2
,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(
2
a-c)cosB=bcosC
,求f(A)的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由题意可得
m
n
=
3
+1
2
=
3
cosclass="stub"x
4
sinclass="stub"x
4
+cos2class="stub"x
4
=
3
2
sinclass="stub"x
2
+class="stub"1
2
cosclass="stub"x
2
+class="stub"1
2

 即sin(class="stub"x
2
+class="stub"π
6
)=
3
2
,所以cos(x+class="stub"π
3
)=1-2sin2(class="stub"x
2
+class="stub"π
6
)=-class="stub"1
2
.------5分
(Ⅱ)∵f(x)=
m
n
-class="stub"1
2
=sin(class="stub"x
2
+class="stub"π
6
)
,则f(A)=sin(class="stub"A
2
+class="stub"π
6
)
 (
2
a-c)cosB=bcosC

(
2
sinA-sinC)cosB=sinBcosC
,即
2
sinAcosB=sinA

∴cosB=
2
2
,则 B=class="stub"π
4

A∈(0,class="stub"3
4
π),class="stub"A
2
+class="stub"π
6
∈(class="stub"π
6
,class="stub"13π
24
)
,∴f(A)∈(class="stub"1
2
,1]
.-------10分

更多内容推荐