优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> △ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;②若sin2A+sin2B=sin2C,则△ABC一定是直角三角
△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;②若sin2A+sin2B=sin2C,则△ABC一定是直角三角
题目简介
△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;②若sin2A+sin2B=sin2C,则△ABC一定是直角三角
题目详情
△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:
①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;
②若sin
2
A+sin
2
B=sin
2
C,则△ABC一定是直角三角形;
③若bcosA=acosB,则△ABC为等腰三角形;
④在△ABC中,若A>B,则sinA>sinB;
⑤若△ABC为锐角三角形,则sinA<cosB.
其中正确命题的序号是______.(注:把你认为正确的命题的序号都填上)
题型:填空题
难度:中档
来源:不详
答案
①若sinBcosC>-cosBsinC⇒sinBcosC+cosBsinC=sin(B+C)>0⇒0<B+C<π,所以①不一定成立;
②∵sinA=
class="stub"a
2r
,sinB=
class="stub"b
2r
,sinC=
class="stub"c
2r
,∴
a
2
4r
2
+
b
2
4r
2
=
c
2
4r
2
,即a2+b2=c2,∴△ABC是直角三角形,②成立,
③若bcosA=acosB⇒2rsinBcosA=2rsinAcosB⇒sin(B-A)=0⇒A=B即③成立.
④在△ABC中,若A>B⇒a>b⇒2rsinA>2rsinB⇒sinA>sinB即④成立;
⑤若△ABC为锐角三角形,A+B>
class="stub"π
2
⇒
class="stub"π
2
>A>
class="stub"π
2
-B⇒sinA>sin(
class="stub"π
2
-B)=cosB即⑤不成立.
故正确命题的是②③④.
故答案为:②③④.
上一篇 :
(1)化简sin(2π-α)cos(π+α)co
下一篇 :
化简:1+sin4α+cos4α1+sin4α-
搜索答案
更多内容推荐
已知函数f(x)=4sin2x+2cos(2x-π3).(Ⅰ)若存在x0∈[π4,2π3],使mf(x0)-4=0成立,求实数m的取值范围;(Ⅱ)若x∈[0,π2],f(x)=52,求sin2x的值.
证明:sin2x2cosx(1+tanx•tanx2)=tanx.-数学
已知函数f(x)=sinx(3cosx-sinx).(1)求f(x)的最小正周期;(2)当x∈(0,2π3)时,求f(x)的取值范围.-数学
已知f(x)=atanx2-bsinx+4(其中a、b为常数且ab≠0),如果f(3)=5,则f(2010π-3)的值为______.-数学
△ABC中,若(sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB,则C=______.-数学
已知f(x)=2sin(x+π6)-433tanα•cos2x2,α∈(0,π)且f(π2=3-2).(1)求α;(2)当x∈[π2,π]时,求函数y=f(x+α)的值域.-数学
已知180°<α<360°,则化简1-cosα1+cosα-1+cosα1-cosα=()A.2sinαB.-2sinαC.-2cosαsinαD.2cosαsinα-数学
在△ABC中,如果sinAcosB=-513,那么△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定-数学
已知△ABC中,AB=a,CA=b,当a•b<0时,△ABC的形状为()A.钝角三角形B.直角三角形C.锐角三角形D.无法判定-数学
在△ABC中,已知tanA+B2=sinC,给出以下论断:①tanA-cotB=1②0<sinA+sinB≤2③sin2A+cos2B=1④cos2A+cos2B=sin2C其中正确的是:______
cos10°•cos80°sin20°=______.-数学
给出下列五个命题:①函数y=2sin(2x-π3)的一条对称轴是x=5π12;②函数y=tanx的图象关于点(π2,0)对称;③正弦函数在第一象限为增函数④若sin(2x1-π4)=sin(2x2-π
已知函数f(x)=asinx-bcosx(ab≠0)满足f(π4-x)=f(π4+x),则直线ax+by+c=0的斜率为______.-数学
若tan(π4-α)=3,则cotα等于()A.-2B.-12C.12D.2-数学
已知函数f(x)=2cos2x2-3sinx(1)求函数f(x)的最小正周期和值域;(2)若α为第二象限角,且cosα=-13,求cos2a1+cos2a-sin2a的值.-数学
函数y=sin2x+23cos2x的最小正周期T=______.-数学
已经函数f(x)=cos2x-sin2x2,g(x)=12sin2x-14.(Ⅰ)函数f(x)的图象可由函数g(x)的图象经过怎样变化得出?(Ⅱ)求函数h(x)=f(x)-g(x)的最小值,并求使用h
在钝角三角形ABC中,a、b、c分别是角A、B、C的对边,m=(2b-c,cosC),n=(a,cosA),且m∥n.(Ⅰ)求角A的大小;(Ⅱ)求函数y=2sin2B+cos(π3-2B)的值域.-数
在下列各数中,与sin2009°的值最接近的数是()A.12B.32C.-12D.-32-数学
已知函数f(x)=sin2x+2sinxcosx+3cos2x其中x∈R(1)求函数f(x)的最小正周期;(2)当x∈[0,π2]时,求f(x)的值域.-数学
函数f(x)=cos4x-sin4x+2asin2(x2-π4),x∈[π6,2π3],a∈R(1)当a=-4时,求函数f(x)的最大值;(2)设g(x)=sinx-32a,且f(x)≤-ag(x)在
设a=(sinx,34),b=(13,12cosx),且a∥b,则锐角x为______.-数学
在△ABC中,若0<tanA•tanB<1,那么△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定-数学
cosπ17cos2π17cos4π17cos8π17=______.-数学
已知函数f(x)=(sinx+cosx)2+2cos2x-2.(1)求f(x)函数图象的对称轴方程;(2)求f(x)的单调增区间.(3)当x∈[π4,3π4]时,求函数f(x)的最大值,最小值.-数学
已知°<α<β<90°,且cosα,cosβ是方程x2-2sin50°x+sin250°-12=0的两根,求tan(β-2α)的值.-数学
已知cos(π4-α)=1213,且π4-α是第一象限角,则sin(π2-2α)sin(π4+α)=()A.913B.1013C.1213D.-1013-数学
已知函数f(x)=1-sin2x1-cos2(π2-x)(1)若tanx=-2,求f(x)的值(2)求函数y=cotx[f(x)]的定义域和值域.-数学
设△ABC的三个内角分别为A,B,C.向量m=(1,cosC2)与n=(3sinC2+cosC2,32)共线.(Ⅰ)求角C的大小;(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2
已知向量a=(sinx,-1),b=(cosx,32).(1)当a∥b时,求cos2x-3sin2x的值.(2)求f(x)=(a+b)•b的最小正周期和单调递增区间.-数学
△ABC中,m=(cosA,sinA),n=(cosB,-sinB),若m•n=12,则角C为()A.π3B.2π3C.π6D.5π6-数学
f(x)=2sin(ωx-π3)cosωx+2cos(2ωx+π6),其中ω>0.(1)若ω=2,求函数f(x)的最小正周期;(2)若y=f(x)满足f(π+x)=f(π-x)(x∈R),且ω∈(12
由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为cosx的二次多项式.对于cos3x,我们有cos3x=cos(2x+x)=cos2xcosx-sin2xsinx=(2cos2x-1)
△ABC中,cos2A2=b+c2c,则△ABC形状是()A.正三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形-数学
函数f(x)=sinx•sin(π2-x),(0<x<π)的单调递减区间为______.-数学
已知:A(cosx,sinx),B(1,1),OA+OB=OC,f(x)=|OC|2.(Ⅰ)求f(x)的对称轴和对称中心;(Ⅱ)求f(x)的单调递增区间.-数学
已知函数f(x)=2sin(13x+φ)(x∈R,-π2<φ<0)图象上一个最低点M(-π,-2)(Ⅰ)求f(x)的解析式;(Ⅱ)设α,β∈[0,π2],f(3α+π2)=1013,f(3β+2π)=
在锐角△ABC中,角A,B,C所对边分别为a,b,c,且bsinAcosB=(2c-b)sinBcosA.(I)求角A;(II)已知向量m=(sinB,cosB),n=(cos2C,sin2C),求|
已知函数f(x)=sin(2x+π6)+sin(2x-π6)-2cos2x,x∈[-π6,π2](1)化简函数f(x)的解析式;(2)求函数f(x)的最大值及相应的自变量x的取值.-数学
在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.(Ⅰ)求角A的大小;(Ⅱ)若sinB、sinA、sinC成等比数列,试判断△ABC的形状.-数学
已知α为锐角,且sinαcosα=12,则11+sinα+11+cosα=______.-数学
在△ABC中,若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,试确定三角形的形状.-数学
函数f(x)=|sinx•cosx-sin2x|的最小正周期是______.-数学
(1)已知sinθ+cosθ=23,求sin2θ的值.(2)化简cos40°(1+3tan10°).-数学
在△ABC中,AB=a,AC=b,当a•b<0时,△ABC为______.-数学
已知角α是第三象限角,且f(α)=sin(π-α)cos(2π-α)tan(-α-π)tan(π+α)sin(-π-α)(1)化简f(α);(2)若cos(α-3π2)=15,求f(α)的值;(3)若
在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数f(x)=3sinx2cosx2+cos2x2,求f(B)的最大值,并判断此时△ABC的形
已知函数y=3sin2x+23sinxcosx-3cos2x,(x∈R),(1)写出这个函数的振幅,初相和最小正周期;(2)求y的最大值及此时x的值;(3)写出这个函数的单调增区间;(4)画出这个函数
在△ABC中,a、b、c分别是角A、B、C的对边,若a=2bcosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形-数学
已知m=(Asinx3,A),n=(3,cosx3),f(x)=m•n,且f(π4)=2.(1)求A的值;(II)设α、β∈[0,π2],f(3α+π)=3017,f(3β-72π)=-85,求cos
返回顶部
题目简介
△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;②若sin2A+sin2B=sin2C,则△ABC一定是直角三角
题目详情
①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;
②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;
③若bcosA=acosB,则△ABC为等腰三角形;
④在△ABC中,若A>B,则sinA>sinB;
⑤若△ABC为锐角三角形,则sinA<cosB.
其中正确命题的序号是______.(注:把你认为正确的命题的序号都填上)
答案
②∵sinA=
③若bcosA=acosB⇒2rsinBcosA=2rsinAcosB⇒sin(B-A)=0⇒A=B即③成立.
④在△ABC中,若A>B⇒a>b⇒2rsinA>2rsinB⇒sinA>sinB即④成立;
⑤若△ABC为锐角三角形,A+B>
故正确命题的是②③④.
故答案为:②③④.