已知函数f(x)=4sin2x+2cos(2x-π3).(Ⅰ)若存在x0∈[π4,2π3],使mf(x0)-4=0成立,求实数m的取值范围;(Ⅱ)若x∈[0,π2],f(x)=52,求sin2x的值.

题目简介

已知函数f(x)=4sin2x+2cos(2x-π3).(Ⅰ)若存在x0∈[π4,2π3],使mf(x0)-4=0成立,求实数m的取值范围;(Ⅱ)若x∈[0,π2],f(x)=52,求sin2x的值.

题目详情

已知函数f(x)=4sin2x+2cos(2x-
π
3
)

(Ⅰ)若存在x0∈[
π
4
3
]
,使mf(x0)-4=0成立,求实数m的取值范围;
 (Ⅱ)若x∈[0,
π
2
]
f(x)=
5
2
,求sin2x的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵f(x)=4sin2x+2cos(2x-class="stub"π
3
)
=2-2cos2x+cos2x+
3
sin2x
=2-cos2x+
3
sin2x

f(x)=2sin(2x-class="stub"π
6
)+2

x0∈[class="stub"π
4
,class="stub"2π
3
]
,∴2x0-class="stub"π
6
∈[class="stub"π
3
,class="stub"7π
6
]

sin(2x0-class="stub"π
6
)∈[-class="stub"1
2
,1]
,∴f(x0)∈[1,4]
class="stub"4
f(x0)
∈[ 1,4]

∵存在x0∈[class="stub"π
4
,class="stub"2π
3
]
,使mf(x0)-4=0成立,
∴实数m的取值范围为1≤m≤4;
(Ⅱ)∵f(x)=2sin(2x-class="stub"π
6
)+2=class="stub"5
2

sin(2x-class="stub"π
6
)=class="stub"1
4

x∈[0,class="stub"π
2
]
,∴2x -class="stub"π
6
∈[-class="stub"π
6
,class="stub"5π
6
]

cos(2x-class="stub"π
6
)=
1-class="stub"1
16
=
15
4

∴sin2x=sin(2x-class="stub"π
6
+class="stub"π
6
)=class="stub"1
4
×
3
2
+
15
4
×class="stub"1
2
=
3
+
15
8

更多内容推荐