已知函数f(x)=sin2x+23sinxcosx+sin(x+π4)sin(x-π4),x∈R.(1)求f(x)的最小正周期和值域;(2)若x=x0(0≤x0≤π2)为f(x)的一个零点,求sin2

题目简介

已知函数f(x)=sin2x+23sinxcosx+sin(x+π4)sin(x-π4),x∈R.(1)求f(x)的最小正周期和值域;(2)若x=x0(0≤x0≤π2)为f(x)的一个零点,求sin2

题目详情

已知函数f(x)=sin2x+2
3
sinxcosx+sin(x+
π
4
)sin(x-
π
4
),x∈R

(1)求f(x)的最小正周期和值域;
(2)若x=x0(0≤x0
π
2
)
为f(x)的一个零点,求sin2x0的值.
题型:解答题难度:中档来源:不详

答案

(1)易得f(x)=sin2x+
3
sin2x+class="stub"1
2
(sin2x-cosx2)
=class="stub"1-cos2x
2
+
3
sin2x-class="stub"1
2
cos2x
=
3
sin2x-cos2x+class="stub"1
2
=2sin(2x-class="stub"π
6
)+class="stub"1
2

所以f(x)周期π,值域为[-class="stub"3
2
,class="stub"5
2
]

(2)由f(x0)=2sin(2x0-class="stub"π
6
)+class="stub"1
2
=0
,得sin(2x0-class="stub"π
6
)=-class="stub"1
4
<0

又由0≤x0≤class="stub"π
2
-class="stub"π
6
≤2x0-class="stub"π
6
≤class="stub"5π
6

所以-class="stub"π
6
≤2x0-class="stub"π
6
≤0
,故cos(2x0-class="stub"π
6
)=
15
4

此时,sin2x0=sin[(2x0-class="stub"π
6
)+class="stub"π
6
]
=sin(2x0-class="stub"π
6
)cosclass="stub"π
6
+cos(2x0-class="stub"π
6
)sinclass="stub"π
6
=-class="stub"1
4
×
3
2
+
15
4
×class="stub"1
2
=
15
-
3
8

更多内容推荐