在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.(Ⅰ)判断△ABC的形状;(Ⅱ)若f(x)=sinx+cosx,求f(A)的最大值.-高二数学

题目简介

在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.(Ⅰ)判断△ABC的形状;(Ⅱ)若f(x)=sinx+cosx,求f(A)的最大值.-高二数学

题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=sinx+cosx,求f(A)的最大值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)(法1)因为asinB-bcosC=ccosB,
由正弦定理可得sinAsinB-sinBcosC=sinCcosB.…(3分)
即sinAsinB=sinCcosB+cosCsinB,
所以sin(C+B)=sinAsinB.…(4分)
因为在△ABC中,A+B+C=π,
所以sinA=sinAsinB又sinA≠0,…(5分)
所以sinB=1,B=class="stub"π
2

所以△ABC为B=class="stub"π
2
的直角三角形.…(6分)
(法2)因为asinB-bcosC=ccosB,
由余弦定理可得asinB=b•
a2+b2-c2
2ab
+c•
a2+c2-b2
2ac
,…(4分)
所以asinB=a.
因为a≠0,所以sinB=1.…(5分)
所以在△ABC中,B=class="stub"π
2

所以△ABC为B=class="stub"π
2
的直角三角形.…(6分)
(Ⅱ)因为f(x)=sinx+cosx=
2
sin(x+class="stub"π
4
)
,…(8分)
所以f(A)=
2
sin(A+class="stub"π
4
)
.…(9分)
因为△ABC是B=class="stub"π
2
的直角三角形,
所以0<A<class="stub"π
2
,…(10分)
所以class="stub"π
4
<A+class="stub"π
4
<class="stub"3π
4
,…(11分)
所以
2
2
<sin(A+class="stub"π
4
)≤1
.…(12分)
即f(A)的最大值为
2
.…(13分)

更多内容推荐