已知向量m=(cosx2,-1),n=(3sinx2,cos2x2),设函数f(x)=m•n+12.(1)若x∈[0,π2],f(x)=33,求cosx的值;(2)在△ABC中,角A,B,C的对边分别

题目简介

已知向量m=(cosx2,-1),n=(3sinx2,cos2x2),设函数f(x)=m•n+12.(1)若x∈[0,π2],f(x)=33,求cosx的值;(2)在△ABC中,角A,B,C的对边分别

题目详情

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+
1
2

(1)若x∈[0,
π
2
],f(x)=
3
3
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,求f(B)的取值范围.
题型:解答题难度:中档来源:黄州区模拟

答案

(1)依题意得f(x)=
m
n
+class="stub"1
2
=
3
sin class="stub"x
2
 cosclass="stub"x
2
-cos2class="stub"x
2
+class="stub"1
2
=
3
2
sinx-class="stub"1+cosx
2
+class="stub"1
2
=sin(x-class="stub"π
6
),…(2分)
由 x∈[0,class="stub"π
2
],得:-class="stub"π
6
≤x-class="stub"π
6
class="stub"π
3
,sin(x-class="stub"π
6
)=
3
3
>0,
从而可得 cos(x-class="stub"π
6
)=
6
3
,…(4分)
则cosx=cos[(x-class="stub"π
6
)+class="stub"π
6
]=cos(x-class="stub"π
6
) sinclass="stub"π
6
-sin(x-class="stub"π
6
) cosclass="stub"π
6
=
2
2
-
3
6
. …(6分)
(2)在△ABC中,由2bcosA≤2c-
3
a 得 2sinBcosA≤2sin(A+B)-
3
 sinA,即 2sinAcosB≥
3
sinA,
由于sinA>0,故有cosB≥
3
2
,从而 0<B≤class="stub"π
6
,…(10分)
故f(B)=sin(B-class="stub"π
6
),由于 0<B≤class="stub"π
6
,∴-class="stub"π
6
<B-class="stub"π
6
≤0,∴sin(B-class="stub"π
6
)∈(-class="stub"1
2
,0],即f(B)∈(-class="stub"1
2
,0]. …(12分)

更多内容推荐