已知函数f(x)=sin2ωx+3sinωxcosωx(ω>0)图象的两相邻对称轴间的距离为π2.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调减区间;(Ⅲ)若对任意x1,x2∈[0,π2]都有|f(x1

题目简介

已知函数f(x)=sin2ωx+3sinωxcosωx(ω>0)图象的两相邻对称轴间的距离为π2.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调减区间;(Ⅲ)若对任意x1,x2∈[0,π2]都有|f(x1

题目详情

已知函数f(x)=sin2ωx+
3
sinωxcosωx
(ω>0)图象的两相邻对称轴间的距离为
π
2

(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调减区间;
(Ⅲ)若对任意x1x2∈[0,
π
2
]
都有|f(x1)-f(x2)|<m,求实数m的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)f(x)=sin2ωx+
3
sinωxcosωx
=class="stub"1-cos2ωx
2
+
3
2
sin2ωx
=sin(2ωx-class="stub"π
6
)+class="stub"1
2

∵函数图象的两相邻对称轴间的距离为class="stub"π
2
,故 class="stub"2π
=class="stub"π
2
,∴ω=2.
(Ⅱ)由(Ⅰ)知f(x)=sin(4x-class="stub"π
6
)+class="stub"1
2
,∵x1x2∈[0,class="stub"π
2
]
,-class="stub"π
6
≤4x1-class="stub"π
6
class="stub"11π
6

-class="stub"π
6
≤4x2-class="stub"π
6
class="stub"11π
6
,∴当4x-class="stub"π
6
=class="stub"π
2
 时,f(x)最大为 1+class="stub"1
2
=class="stub"3
2

当4x-class="stub"π
6
=class="stub"3π
2
 时,f(x)最小为-1+class="stub"1
2
=-class="stub"1
2
,故|f(x1)-f(x2)|的最大值等于 class="stub"3
2
-(-class="stub"1
2
)
=2,
故m>2,实数m的取值范围为(2,+∞).

更多内容推荐