已知函数f(x)=cos(x-2π3)-cosx(x∈R).(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)△ABC内角A、B、C的对边长分别为a、b、c,若f(B)=-32,b=1,c=3,求

题目简介

已知函数f(x)=cos(x-2π3)-cosx(x∈R).(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)△ABC内角A、B、C的对边长分别为a、b、c,若f(B)=-32,b=1,c=3,求

题目详情

已知函数f(x)=cos(x-
3
)-cosx(x∈R)

(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)△ABC内角A、B、C的对边长分别为a、b、c,若f(B)=-
3
2
,b=1,c=
3
,求a的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵f(x)=cos(x-class="stub"2π
3
)-cosx=
3
2
sinx-class="stub"3
2
cosx=
3
sin(x-class="stub"π
3
)

∴函数f(x)的最小正周期为2π,
∵正弦函数的递增区间为[2kπ-class="stub"π
2
,2kπ+class="stub"π
2
],即2kπ-class="stub"π
2
≤x-class="stub"π
3
≤2kπ+class="stub"π
2

∴2kπ-class="stub"π
6
≤x≤2kπ+class="stub"5π
6

则函数f(x)的递增区间为[2kπ-class="stub"π
6
,2kπ+class="stub"5π
6
]
(k∈Z );(6分)
(Ⅱ)根据题意得:f(B)=
3
sin(B-class="stub"π
3
)=-
3
2

sin(B-class="stub"π
3
)=-class="stub"1
2

∵0<B<π,∴-class="stub"π
3
<B-class="stub"π
3
<class="stub"2π
3

B-class="stub"π
3
=-class="stub"π
6
,即B=class="stub"π
6
.        …(9分)
由余弦定理得:b2=a2+c2-2accosB,
1=a2+3-2×a×
3
×
3
2
,即a2-3a+2=0,
故a=1或a=2.     …(12分)

更多内容推荐