已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈[-π2,π2]时,求f(x)的单调递减区间.-数学

题目简介

已知函数f(x)=2cosxsin(x+π3)-3sin2x+sinxcosx(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈[-π2,π2]时,求f(x)的单调递减区间.-数学

题目详情

已知函数f(x)=2cosxsin(x+
π
3
)-
3
sin2x+sinxcosx

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若x∈[-
π
2
π
2
]
时,求f(x)的单调递减区间.
题型:解答题难度:中档来源:内江二模

答案

(Ⅰ)f(x)=2cosx(class="stub"1
2
sinx+
3
2
cosx)-
3
sin2x+sinxcosx

=2sinxcosx+
3
(cos2x-sin2x)

=sin2x+
3
cos2x

=2sin(2x+class="stub"π
3
)

∴T=π
(Ⅱ)f(x)的减区间为2kπ+class="stub"π
2
≤2x+class="stub"π
3
≤2kπ+class="stub"3π
2
kπ+class="stub"π
12
≤x≤kπ+class="stub"7π
12

又∵x∈[-class="stub"π
2
,-class="stub"π
12
]
,∴-class="stub"π
2
≤x≤-class="stub"5π
12
class="stub"π
12
≤x≤class="stub"π
2

即f(x)在[-class="stub"π
2
,-class="stub"5π
12
]
和在[class="stub"π
12
,class="stub"π
2
]
上单调递减.

更多内容推荐