已知函数f(x)=12-cos2(x+π4)+sin(x+π4)cos(x+π4).(I)求函数f(x)的最大值和周期;(II)设角α∈(0,2π),f(α)=22,求α.-数学

题目简介

已知函数f(x)=12-cos2(x+π4)+sin(x+π4)cos(x+π4).(I)求函数f(x)的最大值和周期;(II)设角α∈(0,2π),f(α)=22,求α.-数学

题目详情

已知函数f(x)=
1
2
-cos2(x+
π
4
)+sin(x+
π
4
)cos(x+
π
4
)

(I)求函数f(x)的最大值和周期;
(II)设角α∈(0,2π),f(α)=
2
2
,求α.
题型:解答题难度:中档来源:不详

答案

(I)函数f(x)=class="stub"1
2
-cos2(x+class="stub"π
4
)+sin(x+class="stub"π
4
)cos(x+class="stub"π
4
)
=class="stub"1
2
- class="stub"1
2
[1+cos(2x+class="stub"π
2
)] +class="stub"1
2
sin(2x+class="stub"π
2
)

=class="stub"1
2
sin(2x+class="stub"π
2
)-class="stub"1
2
cos(2x+class="stub"π
2
)
=
2
2
sin[(2x+class="stub"π
2
)-class="stub"π
4
]
=
2
2
sin(2x+class="stub"π
4
)

∴函数f(x)的最大值为
2
2
,周期为T=π
(II)∵f(α)=
2
2
2
2
sin(2α+class="stub"π
4
)=
2
2
sin(2α+class="stub"π
4
)=1

2α+class="stub"π
4
=2kπ+class="stub"π
2
  k∈Z
,∴2α=2kπ+class="stub"π
4
   k∈Z

α=kπ+class="stub"π
8
   k∈Z

∵α∈(0,2π),∴α=class="stub"π
8
α=class="stub"9π
8

更多内容推荐